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Abstract
Purpose Amyloid PET which has been widely used for noninvasive assessment of cortical amyloid burden is visually
interpreted in the clinical setting. As a fast and easy-to-use visual interpretation support system, we analyze whether the
deep learning–based end-to-end estimation of amyloid burden improves inter-reader agreement as well as the confidence
of the visual reading.
Methods A total of 121 clinical routines [18F]Florbetaben PET images were collected for the randomized blind-reader
study. The amyloid PET images were visually interpreted by three experts independently blind to other information. The
readers qualitatively interpreted images without quantification at the first reading session. After more than 2-week
interval, the readers additionally interpreted images with the quantification results provided by the deep learning system.
The qualitative assessment was based on a 3-point BAPL score (1: no amyloid load, 2: minor amyloid load, and 3:
significant amyloid load). The confidence score for each session was evaluated by a 3-point score (0: ambiguous, 1:
probably, and 2: definite to decide).
Results Inter-reader agreements for the visual reading based on a 3-point scale (BAPL score) calculated by Fleiss kappa
coefficients were 0.46 and 0.76 for the visual reading without and with the deep learning system, respectively. For the
two reading sessions, the confidence score of visual reading was improved at the visual reading session with the output
(1.27 ± 0.078 for visual reading-only session vs. 1.66 ± 0.63 for a visual reading session with the deep learning system).
Conclusion Our results highlight the impact of deep learning–based one-step amyloid burden estimation system on inter-reader
agreement and confidence of reading when applied to clinical routine amyloid PET reading.
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Introduction

Alzheimer’s disease is the most main cause of dementia
worldwide [1]. Both clinical signs and histopathological
confirmation by brain biopsy or autopsy were needed for
a definitive diagnosis of Alzheimer’s disease [2–5]. The
amyloid burden estimated by positron emission tomogra-
phy (PET) is highly correlated with the presence and den-
sity of amyloid loading at autopsy [6]. Therefore, amyloid
PET plays a critical role in the diagnosis and predicting
prognosis of Alzheimer’s disease as well as mild cogni-
tive impairment (MCI) [4]. Despite the importance of the
objective and accurate amyloid PET interpretation, the
analysis is mostly based on the degree of an amyloid
burden by qualitative visual reading [4].

The gold standard of the interpretation of amyloid
PET, particularly recent amyloid PET imaging based on
F-18- labeled radiotracers, is the visual reading per-
formed by experts, which has intrinsic limitations in
inter-reader variability and objectiveness [7]. A few
studies have demonstrated improvement of qualitative
interpretation of amyloid PET when readers interpreted
with quantification results [8, 9]. Although the quantifi-
cation results could reduce inter-reader variability in vi-
sual scoring, quantification of amyloid PET is poorly
used in the clinical setting due to usage limitations of
the quantification tools that often require additional time
and effort in busy routine clinical settings. One critical
restraint is that structural MRI is often required for many
quantification methods to define volume-of-interests and
generate spatially normalized amyloid PET [10, 11].
Although some recent tools can also provide quantifica-
tion of amyloid PET data without structural MRI, many
still depend on preprocessing steps, such as spatial
warping and selecting template [10–13], limiting routine
clinical use. Recent advances in deep learning providing
new methods to estimate amyloid PET patterns using
machine learning–based algorithms without manual pro-
cessing image features have been developed [14, 15]. In
this regard, we developed a fast and easy-to-use auto-
mated one-step estimation of amyloid burden application
based on deep learning via end-to-end training [14], con-
sidering that a deep learning–based system that uses a
native-space amyloid PET without preprocessing could
support a visual effectively reading in a busy clinical
environment.

In the study, we applied the one-step amyloid estimation
system based on deep learning to the visual reading of amy-
loid PET images as routine clinical practice. We analyzed the
inter-reader agreement and confidence evaluated by the visual
interpretation-only and the visual interpretation with the deep
learning system to show the improvement of interpreting am-
yloid PET.

Methods

Subjects

We recruited 121 [18F]Florbetaben PET data (M: 36, F: 85;
mean age ± SD: 74.31 ± 7.28) retrospectively who visited the
memory clinic of the Seoul National University Hospital and
underwent [18F]Florbetaben PET from Jan 2019 toMay 2019.
The subjects included 29 patients with dementia (21
Alzheimer’s disease (AD), 3 vascular dementia (VD), 2 de-
mentia with lewy bodies (DLB), 1 frototemporal dementia
(FTD), and 2 dementia not otherwise specified), 68 patients
with mild cognitive impairment (MCI: 60 amnestic and 8 non-
amnestic MCI), and 24 subjective cognitive impairment
(SCI). A diagnosis of dementia was made according to the
criteria of the fourth edition of the Diagnostic and Statistical
Manual of Mental Disorders [16]. AD was diagnosed accord-
ing to the probable or possible AD criteria of the National
Institute of Neurological and Communication Disorders and
S t roke /AD and Re la t ed Di so rde r s Assoc i a t i on
(NINCDSADRDA) [17]. VD was diagnosed according to
the probable or possible VD criteria of the National Institute
of Neurological Disorders and Stroke-Association
Internationale pour la Recherche et l’Enseignement en
Neurosciences (NINDS-AIREN) [18]. DLB was diagnosed
according to the DLB consensus criteria [19] and
frontotemporal dementia (FTD) was diagnosed according to
the FTD consensus criteria [20]. MCI was diagnosed accord-
ing to current consensus criteria [21]. SCI was defined as the
presence of a cognitive impairment with presentation at a
memory clinic but normal cognition on tests [22].

No subjects were excluded to simulate a usual clinical read-
ing environment. The retrospective study was formally ap-
proved by the institutional review boards (SNUH IRB
Registration Number 2004-047-1116) at our center, and in-
formed consent was withdrawn due to the retrospective de-
sign. The study was conducted according to the ethical stan-
dards and the 1964 Helsinki declaration.

[18F]Florbetaben PET images

All patients underwent a 20 min positron emission scan at
90 min af ter the bolus int ravenous inject ion of
[18F]Florbetaben 296 MBq (8 mCi) using dedicated PET/CT
scanners (Biograph mCT40 or mCT64, Siemens Healthcare,
Germany). CT scan was used for attenuation correction,
followed by an emission scan of the brain. PET images were
reconstructed on 400 × 400 image size with a 1 × 1 × 1.5 mm
voxel size. Images were reconstructed with ordered subset
expectation maximization with 24 subsets and 6 iteration
numbers. Post-reconstruction Gaussian filter (full width at half
maximum 2 mm) was applied.
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Visual reading of amyloid PET

The effect of the one-step quantification estimation using a deep
learning system on visual reading was assessed. The overall
design of this study is represented in Fig. 1. Three expert
readers performed visual in terpre ta t ion for 121
[18F]Florbetaben PET images. Three readers performed the vi-
sual reading consisted of two sessions, interpretation with or
without the estimated score of amyloid burden provided by the
deep learning system. Three readers qualitatively interpreted
brain amyloid plaque loading based on the Brain Amyloid
Plaque Load (BAPL) score (1: no amyloid load, 2: minor am-
yloid load, and 3: significant amyloid load) and the confidence
score on a 3-point scale (0: ambiguous, 1: probably, and 2:
definite to decide) [23]. The visual interpretation was based
on the guideline of [18F]Florbetaben PET [23]. All three readers
were trained for the visual reading of amyloid PET according to
the guidelines and had experience on amyloid PET reading as a
clinical routine (9-year, 5-year, and 3-year experienced for am-
yloid PET reading, respectively). Briefly, typical transverse am-
yloid PET slices at different brain levels including frontal, cin-
gulate, parietal, temporal, and cerebellar cortices of an individ-
ual judged as a visual BAPL score [23]. Furthermore, amyloid
PET scans were classified into two groups, negative and posi-
tive scans: 1 BAPL scores = negative scans, 2 and 3 BAPL
scores = positive scans [23].

The estimation of amyloid burden using the deep learn-
ing system was obtained by directly entering reconstruct-
ed Dicom images of [18F]Florbetaben PET. The deep
learning system provided an estimated standardized-
uptake-value ratio (SUVR) for frontal, cingulate, parietal,
and temporal cortices as the reference to the whole cere-
bellar region. Thus, quantitative information was predict-
ed by the one-step estimation model based on end-to-end
training of the deep learning model. This model was
trained by multicenter native-space PET images from the
Alzheimer’s Disease Neuroimaging Initiative, which in-
cluded images acquired by variable hardware and recon-
struction algorithms [14, 24]. Detailed architectures and
the training process of the model were described in the
previous report [14]. The readers interpreted a visual
reading-only at the first reading session, and then the
readers re-evaluated amyloid PET again assisted by the
quantification estimation results provided by the deep
learning system. At the second reading session, the
readers re-evaluated the BAPL scale again referring the
estimated SUVR provided by the deep learning model.
Notably, the specific cut-off of SUVR was not used but
overall distribution data of the estimated SUVR of popu-
lation were reviewed before the reading to refer individual
SUVR for visual analysis. The two reading sessions had
at least 2-week interval.

Fig. 1 The overall workflow of this study. The visual reading with
separated two reading sessions with or without a deep learning–based
amyloid burden estimation system was performed. The three readers vi-
sually interpreted amyloid burden based on the brain amyloid plaque load

(BAPL) score and the confidence score on a 3-point scale (from 0—
obscure to 2—easy to decide) at each reading session. In two reading
sessions at least 2 weeks apart. Inter-reader variability and confidence
score were evaluated
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Statistical analysis

The inter-reader reliabilities were measured by Fleiss kappa
coefficients in interpersonal variability and confidence score,
respectively. A paired t test was applied to assess the differ-
ence in confidence scores and a p value of < 0.05 was consid-
ered statistically significant. The statistic computing was mea-
sured using Python (version 3.6.9) and Scipy package (ver-
sion 1.4.1).

Results

We performed the randomized blind-reader study using
[18F]Florbetaben PET images clinically routinely obtain-
ed. Three readers have 9-years’ 5-years’, and 3-years’
experience for general and amyloid PET reading, respec-
tively. The BAPL score was reevaluated for each reader
after a minimum of 2 weeks as a second reading session
with the deep learning–based amyloid estimation system
(Fig. 1). The inter-reader agreement of visual reading am-
yloid PET quantification with or without deep learning
results is shown in Table 1. The cross-tables for the
readers according to different reading sessions are sum-
marized in Supplementary Table 1. The Fleiss kappa co-
efficients (95% confidence interval (CI)) of the inter-
reader agreement for the classification for a 3-point scale
of BAPL scores were 0.47 (95% CI: 0.39–0.59) and 0.76
(95% CI: 0.71–0.85) for the visual reading only and with
the deep learning–based estimation, respectively. When
PET images were divided into two classes, amyloid-
positive and negative, inter-reader agreements were 0.62
and 0.85 for the two reading sessions, respectively.

We also assessed the impact of the deep learning–
based system on the confidence of visual interpretation.
The confidence score of visual reading was significantly
increased at the visual reading session with the deep
learning system (1.27 ± 0.78 for visual reading only and
1.66 ± 0.62 for visual reading with the deep learning

system; t = − 9.62, p < 0.001) (Fig. 2a). On a 3-point scale,
the total number of 0-point, low confidence in visual read-
ing, was 74 (20.39%) at the visual reading-only session,
which was reduced to 29 (7.99%) at the reading session
with the deep learning system. Additionally, the total
number of 2-point, high confidence in visual reading,
was increased, from 171 (47.11%) to 267 (73.55%) (Fig.
2b). All three readers showed increased confidence score,
though the level of experience in amyloid PET was dif-
ferent (Supplementary Fig. 1). Waterfall plots represented
the estimated SUVR of amyloid PET with the inter-reader
agreement (Fig. 3a, b) and the confidence score (Fig.
3c, d). Among 121 amyloid PET images, 52.1% of im-
ages were agreed for all readers at the visual reading-only
session, while 78.5% of images were agreed for all
readers at the visual reading with the deep learning sys-
tem. Among PET images that show estimated SUVR
ranged from 1.1 to 1.4, 28.6% images were agreed for
all readers based on BAPL score on a 3-point scale at
the visual reading-only session. However, 63.3% of these
images were agreed for all readers at the visual reading
session with the deep learning system. The confidence
score was also increased after the use of the deep
learning–based system (Fig. 3c, d). Of note, a relatively
low confidence score at the reading session with the deep
learning–based system was found in PET images with
SUVR ranged from 1.1 to 1.4, which suggested equivocal
cases of amyloid PET [25].

Discussion

The visual reading of amyloid PET is used to evaluate brain
amyloid positivity in routine clinical practice as it is regarded
as a gold standard for non-invasive assessment of cortical
amyloid burden [23, 26]. Nevertheless, the limitation in ob-
jectiveness and inter-reader variability is inevitable. Thus, am-
yloid PET with equivocal amyloid deposits has been a prob-
lem in the diagnosis of dementia [27, 28]. To reduce this

Table 1 The visual reading of amyloid PET quantification with or without deep learning–based amyloid estimation results

The first reading session The second reading session
Visual interpretation-only Visual interpretation with

deep learning–based amyloid estimation

Fleiss kappa coefficientfor BAPL score (3-point scale) 0.465 0.759

Fleiss kappa coefficient for negative/positive PET scan
(2-point scale)

0.621 0.852

Confidence score (mean ± SD) 1.27 ± 0.78 1.66 ± 0.62

Confidence score 0-point (ambiguously) 74 29

1-point (probably) 118 67

2-point (definitely) 171 267
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ambiguity and increase the inter-reader agreement, the use of
quantification of amyloid PET in the clinical routine practice
has been attempted [6, 14, 24]. Conventional amyloid PET
quantification requires multiple and complicated steps that
limit to be utilized in routine clinical use. For example, most
quantification methods require structural MRI combined with
amyloid PET to identify graymatter and spatially normalize to
the template space. However, because of the high cost, both
PET and MRI are not always obtained. Furthermore, compli-
cated steps of preprocessing, which are even more not stan-
dardized, limit the usage of quantification supporting visual
interpretation in the clinical routine. Therefore, the estimation
of amyloid PET has depended on visual interpretation-only in
many centers even though quantification methods could en-
hance the reading improvement [8, 9].

The main advantage of our assessment is the improvement
of visual reading in terms of the inter-reader agreement and
confidence. Our findings are consistent with recent studies
that showed increased inter-reader agreement in amyloid
PET interpretation by quantitative information [8, 9]. The
SUVR values were used for categorizing amyloid images that
help to increase inter-reader agreement [29]. The increased
inter-reader agreement by using quantification or objective
stratification may help early detection of cerebral amyloid
load in clinical practice [15, 30]. Compared with other previ-
ous works, the estimation of amyloid PET quantification was
obtained by the one-step process, which only required native-

space PET images with reconstructed Dicom-formatted files
[14, 24].

We could obtain the estimation results to support visual
interpretation with a simple process. Practically, we used a
web-based application to embed this system run on a server
computer, and each client connected to obtain the estimation
results of amyloid burden (Supplementary Fig. 2). Notably,
SUVR ranged from 1.1 to 1.3 was considered as a borderline
of amyloid positivity according to the overall results; thus, the
borderline range was visualized on the web-based application.
Since the total estimation time was less than 5 s, the estimation
result could be easily referred to during visual reading to make
more confident visual grading of amyloid PET.

Our results showed increases in inter-reader agreement and
confidence in visual reading sessions with the deep learning
system. Moreover, the inter-reader agreement was increased
in PET images with equivocal amyloid positivity. Despite the
use of the deep learning–based system, PET images with
equivocal amyloid positivity remained to show relatively
low confidence score compared with other amyloid PET im-
ages. We represented a few cases with low confidence scores
in both sessions with disagreement in visual reading
(Supplementary Fig. 3). Notably, these equivocal cases were
not improved by the deep learning–based estimation in terms
of confidence score, because of borderline quantification re-
sults. Nonetheless, a visual reading supported by the deep
learning system may improve the communication between

Fig. 2 The differences in confidence score supported by the deep
learning–based system. a The confidence score of visual interpretation
with the deep learning–based system was significantly higher than those
of visual interpretation only (1.27 ± 0.78 for visual reading only and 1.66

± 0.62 for visual reading with the deep learning system; t = − 9.62,
p < 0.001). b The distribution of scores was changed according to the
usage of the deep learning–based system
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reading experts and clinicians as the reading was supported by
an objective estimation result. As future work, the role of
estimation of amyloid burden using the deep learning system
in the clinical decision making beyond visual amyloid posi-
tivity should be further validated.

Even though the deep learning system helps visual reading
of amyloid PET in reducing subjectivity and ambiguity, there
is still a limitation in this study. This study is limited by its
retrospective nature, conducted in a single-center, and used
only [18F]Florbetaben radiotracer. The standard Centiloid
quantification was developed to harmonize multiple tracers
and multicenter of amyloid PET that critical to sustain the
reliable decision of each tracer [31]. We need to validate its
usefulness in the clinical practice by multiple tracers and a
multicenter prospective study using native-space amyloid
PET data with various scanners. The inclusion of a large scale
of native-space amyloid images with multiple tracers, various
scanners, and different reconstruction methods could have a
great impact on clinical practice that would reflect the worth of

the reading support system. Another limitation is that the sub-
ject information of characteristics such as age, sex, clinical
diagnosis, and cortical atrophy status was ignored when the
reader interpreted visual amyloid PET quantification. The am-
yloid PET scans in this study were performed as a baseline
evaluation and it was not sufficient to include clinical follow-
up to assess the impact of the deep learning–based estimation
on final diagnosis. Furthermore, the formal reports of
[18F]Florbetaben PET made by the consensus of visual read-
ing of multiple readers were used for the clinical diagnosis;
thus, it was hard to evaluate whether the model could change
clinical diagnosis. As further work, a prospective study to
evaluate the impact of deep learning–based estimation on
the diagnosis determined by long-term follow-up and the clin-
ical course can be investigated. Besides, we used the estimated
amyloid burden by deep learning method which was not di-
rectly calculated by conventional image processing including
image co-registration, segmentation, and normalization [14,
32–35]. Therefore, the use of estimation results without any

Fig. 3 The inter-reader agreement and confidence score according to
deep learning–based amyloid estimation results. The estimated results
of the amyloid burden by deep learning were represented with the inter-
reader agreement in 121 amyloid PET scans among 3 readers for the
visual interpretation-only session (a) and visual interpretation with the
deep learning–based estimation results (b). The estimated results were
also represented with the confidence score for the visual interpretation-

only session (c) and visual interpretation with the deep learning–based
estimation results (d). The color indicates the agreement of the number of
the same results among 3 readers (green: the same amyloid quantification
among 3 readers, pink: the same amyloid quantification of 2 readers, and
red: difference amyloid quantification among 3 readers (a, b). The
colormap indicates the mean of confidence scores among 3 readers (c, d)
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visual reading might be dangerous particularly for the PET
scans with equivocal amyloid positivity as well as abnormal
space-occupying brain lesions that affect amyloid quantifica-
tion [34, 36, 37]. For these reasons, additional methods are
required to improve on accuracy and reliability of visual am-
yloid PET quantification.

In conclusion, this study demonstrates that the visual read-
ing of amyloid PET combined with the deep learning–based
estimation of amyloid burden improves the visual interpreta-
tion in terms of confidence in the reading and inter-reader
agreement. Clinical decisions and management plans depend
on the clinical diagnosis of cognitive disorders and those are
highly affected by the reading of amyloid PET [38].
Therefore, reliable interpretation of amyloid PET is critical
in the diagnosis and further management plan. By reducing
disagreement cases particularly for amyloid PET with equiv-
ocal amyloid positivity, the deep learning–based amyloid bur-
den estimation system could make the diagnosis more reliable.
Furthermore, the one-step estimation method would support
visual reading for experts as well as trainees as it can be used
in the busy clinical setting.
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