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Abstract.
Background: Physical activities (PA) have been suggested to reduce the risk of Alzheimer‘s disease (AD) dementia. However,
information on the neuropathological links underlying the relationship is limited.
Objective: We investigated the role of midlife and late-life PA with in vivo AD neuropathologies in old adults without
dementia.
Methods: This study included participants from the Korean Brain Aging Study for Early Diagnosis and Prediction of
Alzheimer’s disease (KBASE). The participants underwent comprehensive clinical and neuropsychological assessment,
[11C] Pittsburgh Compound B positron emission tomography (PET), [18F] fluorodeoxyglucose PET, and magnetic resonance
imaging. Using the multi-modal brain imaging data, in vivo AD pathologies including global amyloid deposition, AD-
signature region cerebral glucose metabolism (AD-CM), and AD-signature region cortical thickness (AD-CT) were quantified.
Both midlife and late-life PA of participants were measured using the Lifetime Total Physical Activity Questionnaire.
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Results: This study was performed on 260 participants without dementia (195 with normal cognitive function and 65 with mild
cognitive impairment). PA of neither midlife nor late-life showed direct correspondence with any neuroimaging biomarker.
However, late-life PA moderated the relationship of brain amyloid-� (A�) deposition with AD-CM and AD-CT. A� positivity
had a significant negative effect on both AD-CM and AD-CT in individuals with lower late-life PA, but those with higher
late-life PA did not show such results. Midlife PA did not have such a moderation effect.
Conclusion: The findings suggest that physically active lifestyle in late-life, rather than that in midlife, may delay AD-
associated cognitive decline by decreasing A�-induced neurodegenerative changes in old adults.
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INTRODUCTION

Multiple studies have suggested that physical
activities (PA) can lower the risk of Alzheimer’s dis-
ease (AD) dementia or related cognitive decline in old
adults [1–3]. Nevertheless, neuropathological mech-
anisms showing the role of PA in lowering the risk of
AD dementia and cognitive impairment have not been
established. Although several studies have investi-
gated the effect of PA on AD biomarkers, such as
amyloid-� (A�) deposition [4–7], and on regional
neurodegeneration [6, 8], the findings have not been
consistent.

A� deposition is known to begin at about 10
to 15 years before the presentation of significant
cognitive dysfunction [9, 10]. As clinical AD demen-
tia usually manifests in late-life, it can be inferred
that A� pathology commences even around midlife.
Furthermore, tau pathology and AD-related neurode-
generation follow A� pathology after a considerable
duration, and their presence closely precedes appear-
ance of cognitive decline in late-life [9, 11]. As
the pathological processes proceed sequentially from
midlife to late-life, the influence of PA on different
AD pathologies may vary depending on the timing of
PA (midlife versus late-life); thus, this may partially
explain the inconsistency of the previous findings
for the neuropathological mechanisms or substrates
underlying the protective effect of PA on AD demen-
tia or related cognitive impairment. Nevertheless, the
effect of PA timing, specifically, midlife PA (PAmid)
and late-life PA (PAlate) separately, on in vivo AD
pathologies are not clear.

In addition, a longitudinal observational study
reported that late-life PA attenuated the negative asso-
ciations of A� burden with cognitive decline and gray
matter volume loss [12], suggesting the possibility
of moderation by PA for the relationship between
amyloid pathology and subsequent neurodegenera-
tion. A couple of animal studies also showed that

exercise inhibits A�-related cognitive deficit in trans-
genic mice [13, 14]. Given these findings, much is
to be established regarding the moderating role of
PA on the relationship between A� pathology and
subsequent AD-related regional neurodegenerations.

In our study, in order to advance the understanding
of the neuropathological links underlying the role of
PA on AD, we first investigated the direct effect of
PAmid and PAlate on in vivo AD pathologies, including
A� deposition, AD-related brain atrophy, and AD-
related cerebral hypometabolism, as measured by
multiple neuroimaging modalities. Considering the
sequential AD pathological process and the possibil-
ity of moderation by PA for A� effect on subsequent
neurodegeneration, we further evaluated the moder-
ation effect of PAmid and PAlate on the relationship
of A� deposition with AD-related brain atrophy and
hypometabolism.

METHODS

Participants

This study was part of an ongoing prospective
cohort study, the Korean Brain Aging Study for Early
Diagnosis and Prediction of Alzheimer‘s Disease
(KBASE). The KBASE started in 2014 to identify
novel AD biomarkers and to determine potential con-
tributing factors in the lifestyle to AD pathologies
[15]. The present study included 260 participants
without dementia [195 with normal cognitive func-
tion (CN) and 65 with mild cognitive impairment
(MCI)] aged between 61 and 90 years.

The CN individuals had clinical dementia rat-
ing (CDR) score [16] was 0 with no diagnosis of
MCI or dementia. MCI status was assigned to indi-
viduals based on the current consensus guidelines
[17] for MCI: 1) memory complaint corroborated by
informant; 2) objective memory impairment; 3) pre-
served global cognitive function; 4) independence in
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functional activities; and 5) no dementia. For crite-
rion 2), the age-, education, and sex-adjusted z-scores
of < –1.0 for at least 1 of the 4 episodic memory
tests: Word List Memory, Word List Recall, Word List
Recognition, and Constructional Recall test in the
Korean version of Consortium to Establish a Registry
for Alzheimer‘s Disease (CERAD-K) neuropsycho-
logical battery [18]. All individuals with MCI had a
global CDR score of 0.5.

The exclusion criteria were as follows: 1) presence
of a major psychiatric illness, including alcohol-
related disorders; 2) significant neurological or
medical conditions or comorbidities that could affect
mental function; 3) contraindications for a mag-
netic resonance imaging (MRI) scan (e.g., pacemaker
or claustrophobia); 4) illiteracy; 5) presence of
significant visual/hearing difficulties and/or severe
communication or behavioral problems that would
make clinical examinations or brain scans diffi-
cult; and 6) taking an investigational drug. All
participants underwent standardized clinical and neu-
ropsychological evaluations according to the KBASE
clinical assessment protocol [15], which included
the CERAD-K assessment battery [18, 19]. Details
regarding the KBASE study methodology, including
the enrollment and assessment of participants, has
been described previously [15].

This study was approved by the Institutional
Review board of Seoul National University Hospital
(C-1401-027-547) and SNU-SMG Boramae medical
center (26-2015-60), Seoul, South Korea. All partici-
pants of this study provided written informed consent
prior to participation.

Assessment of physical activity

PA of the participants were measured using
the interviewer-administered Lifetime Total Phys-
ical Activity Questionnaire (LTPAQ), a tool with
demonstrated reliability [20] and validity [21]. This
questionnaire assesses occupational, household, and
leisure activities separately throughout the respon-
dent’s lifetime. The frequency and duration of these
activities were assessed by recording the number of
years, months per year, weeks per month, days per
week, and hours per day that each activity was per-
formed. The intensity of activity was assigned by the
participant as sedentary, light, moderate, or heavy. A
metabolic equivalent (MET) value was matched to
each activity based on the Compendium of Physical
Activities [22]. We calculated PAmid and PAlate as the
average MET-hour/week spent on all occupational,

household, and exercise/sports activities of partici-
pants between the ages of 41–60 years and over the
past one year, respectively.

Assessment of potential confounders

The comorbid vascular risk factors (VRF), includ-
ing hypertension, diabetes mellitus, dyslipidemia,
coronary heart disease, transient ischemic attack, and
stroke, were also assessed. The vascular risk score
(VRS) was calculated by the number of the VRFs as
a percentage [23].

Cognitive activities (CA) of participants were also
measured using a 39-item expanded version of the
lifetime cognitive activity scale [24] of a previous
25-item self-report questionnaire [25]. Participants
were asked to report the frequency of participation in
common cognitively demanding activities with few
barriers, such as reading newspapers, magazines, or
books; visiting a museum or library; attending a con-
cert, play, or musical; and writing letters; and playing
games, at 5 age epochs: 6, 12, 18, and 40 years and the
current age. Responses for each item were recorded
using a 5-point frequency scale: 5, every day or almost
every day; 4, several times a week; 3, several times
a month; 2, several times a year; and 1, once a year
or less. Among the 39 items for CA, there were nine
items each for current age (late-life) and 40 years of
age (midlife). The scores of all items for both late-life
and midlife were averaged to yield a CA score.

Whole blood samples were obtained for extract-
ing genomic DNA. Apolipoprotein E �4 (APOE4)
genotyping was performed according to established
techniques [15, 26].

Measurement of cerebral amyloid deposition

All the participants underwent simultaneous
three-dimensional (3D) [11C] Pittsburgh compound
B-positron emission tomography (PiB-PET), and
3D T1-weighted MRI, using the 3.0 T Biograph
mMR (PET-MR) scanner (Siemens, Washington,
DC, USA). Details of PiB-PET imaging acquisition
and preprocessing were previously described [27].

The automated anatomical labeling algorithm [28]
and a region-combining method [29] were applied
to determine the regions of interest (ROIs) to mea-
sure global amyloid retention level in the frontal,
lateral parietal, precuneus/posterior cingulate pre-
cuneus (PC/PCC), and lateral temporal regions. The
standardized uptake value ratios (SUVR) were gener-
ated by the mean value for all voxels within the ROIs
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by the mean cerebellar uptake value in the same image
[28, 29]. Participants were classified as A� positive
if the SUVR value was > 1.4.

Measurement of AD-signature
neurodegeneration

Participants also underwent fluorodeoxyglucose
(FDG)-PET imaging using the PET-MR. Details of
FDG-PET imaging acquisition and preprocessing
have been established previously [27]. The AD-
signature FDG-PET ROIs included the angular gyrus,
posterior cingulate cortex, and inferior temporal
gyrus which were known to be sensitive to change
associated with AD [30]. The AD-signature cere-
bral glucose metabolism (AD-CM) was defined as
the voxel-weighted mean SUVR extracted from the
AD-signature FDG ROIs [30].

All T1-weighted images were acquired in the sagit-
tal orientation using the PET-MR machine. Details
of MRI imaging acquisition and preprocessing have
been established previously [27]. The AD-signature
cortical thickness (AD-CT) was defined as the
mean cortical thickness values extracted from AD-
signature regions including the medial temporal
(entorhinal and parahippocampal) area, middle tem-
poral gyrus, angular gyrus, and PC/PCC [31, 32].

Statistical analysis

A multiple linear regression analysis was con-
ducted to examine the association of PAmid (or PAlate)
(independent variable) with each of global A� reten-
tion, AD-CM, and AD-CT (dependent variables)
controlling for age, sex, years of education, APOE4
carrier status, VRS, CA score, and clinical diagnosis
(CN versus MCI). A logistic regression analysis was
also performed to investigate the association between
each PAmid (or PAlate) (independent variable) and
A� positivity (dependent variable) controlling for the
same covariates. To evaluate the moderation effect of
PAmid (or PAlate) on the relationship between A� pos-
itivity and AD-CM or AD-CT, general linear model
(GLM) analyses were conducted including PAmid (or
PAlate) × A� positivity interaction term with PAmid
(or PAlate) and A� positivity as independent variables,
AD-CM or AD-CT as dependent variables, and the
same covariates used in above analyses. If there was a
significant PA × A� positivity interaction effect, fur-
ther subgroup analyses were performed for each of
the lower PA (median and below median value of PA)
and higher PA (above median value of PA) group. All

statistical analyses were conducted using SPSS soft-
ware (ver. 25.0 for windows; SPSS Inc., Chicago,
IL) and a p-value < 0.05 was considered statistically
significant.

RESULTS

Demographics

The characteristics of the participants are summa-
rized in Table 1. The mean age and education of all
participants were 72.3 (SD 6.3) and 11.1 (SD 4.8),
respectively, and 55.8% of them was female. In regard
of cognitive function, mean MMSE and CERAD total
score were 25.5 (SD 3.4) and 72.4 (SD 15.5), respec-
tively.

Association between PA and AD biomarkers

Multiple linear regression analyses revealed that
neither PAmid nor PAlate affected global A� retention
(p = 0.386 in PAmid, p = 0.819 in PAlate, respec-
tively), AD-CM (p = 0.649 in PAmid, p = 0.427 in
PAlate, respectively), and AD-CT (p = 0.889 in PAmid,
p = 0.145 in PAlate, respectively). Further, logistic
regression analysis did not show any significant
association between PAmid (p = 0.226) or PAlate
(p = 0.292) and A� positivity (Table 2).

Moderation of PA on the relationship between
Aβ deposition and neurodegeneration

GLM analysis showed that PAlate significantly
moderated the relationship between A� positivity
and AD-CT (p = 0.004) (Table 3). PAlate attenuated
the negative influence of A� positivity on AD-
CT. Although not statistically significant, PAlate also
appears to reduce the negative association between
A� positivity and AD-CM (p = 0.060). Subsequent
subgroup analyses demonstrated that A� positivity
was associated with lower AD-CT (p = 0.028) or AD-
CM (p = 0.009) in lower PAlate group, whereas it
did not have any significant relationship with those
markers (p = 0.219 in AD-CT, p = 0.086 in AD-CM,
respectively) in higher PAlate group (Table 4 and
Fig. 1A, B). As described in statistical analysis sec-
tion, the participants were divided into the lower
PAlate and higher PAlate subgroup by the median value
(55.58 MET∗hour/week) of the PAlate. In contrast,
PAmid did not show such moderation effect on the
relationship of A� positivity with AD-CT (p = 0.267)
and AD-CM (p = 0.553).
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Table 1
Demographic data

Variables Number (%) CN (n = 195) MCI (n = 65)
or Mean (SD)

Age, y 72.30 (6.31) 71.69 (6.39) 74.11 (5.75)
Education, y 11.10 (4.78) 11.37 (4.82) 10.28 (4.60)
Sex (Female/Male) 145/115 (55.8/44.2) 99/96 (50.8/49.2) 46/16 (70.8/29.2)
VRS 17.82 (15.87) 17.78 (15.88) 17.95 (15.95)
APOE4 carriers (–/+) 199/61 (76.5/23.5) 160/35 (82.1/17.9) 39/26 (60.0/40.0)
MMSE 25.54 (3.39) 26.64 (2.57) 22.23 (3.42)
CERAD total score 72.41 (15.48) 78.52 (11.26) 54.08 (11.39)
LTPAQ score, MET∗hour/week

Midlife 123.63 (97.43) 131.93 (93.99) 98.72 (103.89)
Late-life 83.68 (84.54) 89.80 (85.53) 65.30 (79.31)

Cognitive activity score 2.34 (0.68) 2.41 (0.68) 2.11 (0.63)
A� retention, SUVR 1.31 (0.38) 1.21 (0.26) 1.63 (0.49)
A� positivity (–/+) 186/74 (71.5/28.5) 161/34 (82.6/17.4) 25/40 (38.5/61.5)
AD-CM, SUVR 1.38 (0.13) 1.41 (0.12) 1.31 (0.16)
AD-CT, mm 2.39 (0.18) 2.43 (0.15) 2.28 (0.21)

SD, standard deviation; CN, cognitive normal; MCI, mild cognitive impairment; VRS, vascular risk score; APOE4,
apolipoprotein E �4; MMSE, Mini-Mental Status Examination; CERAD, Consortium to Establish a Registry
for Alzheimer’s Disease; LTPAQ, lifetime total physical activity questionnaire; MET, metabolic equivalent; A�,
amyloid-�; SUVR, standardized uptake value ratio; AD-CM, Alzheimer’s disease signature region cerebral glucose
metabolism; AD-CT, Alzheimer’s disease signature cortical thickness.

Table 2
Logistic and linear regression analyses for the relationship of physical activity with AD biomarkers

Dependent variable Independent variable OR 95% CI p

A� positivity Midlife PA 1.002 0.999∼1.006 0.226
Late-life PA 1.002 0.998∼1.006 0.292

Dependent variable Independent variable Beta 95% CI p

A� retention Midlife PA 0.046 0.000∼0.001 0.386
Late-life PA 0.012 0.000∼0.001 0.819

AD-CM Midlife PA 0.028 0.000∼0.000 0.649
Late-life PA 0.048 0.000∼0.000 0.427

AD-CT Midlife PA –0.007 0.000∼0.000 0.889
Late-life PA 0.075 0.000∼0.000 0.145

Adjusted for age, sex, education, apolipoprotein E �4, vascular risk score, cognitive activity score, and clinical
diagnosis. AD, Alzheimer’s disease; OR, odds ratio; CI, confidence interval; A�, amyloid-�; PA, physical activity;
AD-CM, Alzheimer’s disease signature region cerebral glucose metabolism; AD-CT, Alzheimer’s disease signature
cortical thickness.

Table 3
Moderation of physical activity on the relationship between amyloid positivity and AD-related neurodegeneration

PA period Dependent variable Independent variable Beta 95% CI p

Midlife AD-CM PA 0.069 0.000∼0.000 0.358
A� positivity –0.174 –0.107∼0.005 0.072
PA × A� positivity –0.058 0.000∼0.000 0.553

AD-CT PA –0.041 0.000∼0.000 0.532
A� positivity –0.212 –0.145∼–0.019 0.011
PA × A� positivity 0.094 0.000∼0.001 0.267

Late-life AD-CM PA –0.013 0.000∼0.000 0.852
A� positivity –0.319 –0.144∼–0.043 < 0.001
PA × A� positivity 0.162 0.000∼0.001 0.060

AD-CT PA –0.013 0.000∼0.000 0.833
A� positivity –0.289 –0.169∼–0.056 < 0.001
PA × A� positivity 0.214 0.000∼0.001 0.004

Adjusted for age, sex, education, apolipoprotein E �4, vascular risk score, cognitive activity score, and clinical diagnosis.
AD, Alzheimer’s disease; PA, physical activity; CI, confidence interval; AD-CM, Alzheimer’s disease signature region
cerebral glucose metabolism; A�, amyloid-�; AD-CT, Alzheimer’s disease signature cortical thickness.
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Table 4
Subgroup analysis by late-life physical activity intensity between amyloid positivity and AD-related neurodegeneration

Subgroup Dependent variable Independent variable Beta 95% CI p

Lower late-life PA group AD-CM A� positivity –0.259 –0.127∼–0.019 0.009
AD-CT A� positivity –0.192 –0.153∼–0.009 0.028

Higher late-life PA group AD-CM A� positivity –0.170 –0.109∼0.007 0.086
AD-CT A� positivity –0.102 –0.086∼0.020 0.219

Adjusted for age, sex, education, apolipoprotein E �4, vascular risk score, cognitive activity score, and clinical diagnosis. Lower
late-life PA group (n = 130) consisted of participants who performed median and below median values of late-life PA whereas
higher late-life PA group (n = 130) consisted of the ones who performed above median value of PA. AD, Alzheimer’s disease;
CI, confidence interval; PA, physical activity; AD-CM, Alzheimer’s disease signature region cerebral glucose metabolism;
A�, amyloid-�; AD-CT, Alzheimer’s disease signature cortical thickness.

Fig. 1. Relationship between A� positivity and AD-CM (A) or AD-CT (B) in late-life PA subgroup by intensity. Error bars represent standard
deviation. Lower PAlate group (n = 130) consisted of participants who performed median and below median values of PAlate whereas higher
PAlate group (n = 130) consisted of the ones who performed above median value of PA. Multiple linear regression analysis was performed after
adjusting for age, sex, education, apolipoprotein E �4, vascular risk score, cognitive activity score, and clinical diagnosis. A�, amyloid-�;
AD-CM, Alzheimer’s disease signature region cerebral glucose metabolism; AD-CT, Alzheimer’s disease signature cortical thickness; PA,
physical activity; PAlate, late-life physical activity.

When global A� retention was used as a marker
for A� deposition in the analysis, the results for the
moderation effect of A� were very similar (Supple-
mentary Table 1). In addition, when we controlled
cognitive function or performance (i.e., Mini-Mental
Status Examination or CDR sum of boxes score)
instead of clinical diagnosis, the results did not
change (Supplementary Tables 2 and 3).

DISCUSSION

In the current study, we found that PAlate, but
not PAmid, moderated the relationship between A�
deposition and AD-related neurodegeneration, while
neither PAmid nor PAlate directly affected any in vivo
AD pathological markers. More specifically, higher
A� deposition was observed with greater AD-related
neurodegeneration in the lower PAlate group, but not
in the higher PAlate group.

In line with our findings, several previous stud-
ies reported no direct association between PAmid or
PAlate and AD pathological markers, such as A�
deposition, cerebral glucose metabolism, and hip-
pocampal volume [5, 6, 33–35]. Recent intervention
studies also did not demonstrate any protective effect
of PA on amyloid deposition and whole brain or
hippocampal volume in non-demented or CN partic-
ipants [36–38], while a couple of studies reported the
association between PAmid or PAlate with A� deposi-
tion [4, 7]. Some studies also indicated that PA may
relate to relatively preserved brain or hippocampal
volume in non-demented old adults [39–41]. How-
ever, they simply evaluated the relationship between
PA and brain volume, while the influence on A�
deposition was relatively unknown.

We found that a higher PAlate attenuated the
relationship between amyloid deposition and neu-
rodegeneration. This finding is very similar to a
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previous report which showed that PAlate attenu-
ated the relationship of A� burden with gray matter
volume loss [12]. It is not easy to provide accu-
rate mechanism underlying such moderation effect
of PAlate, the following explanations may help to
understand the effect of PAlate. First, PA is known
to decrease insulin resistance [42]. Increased insulin
resistance has been observed with a higher phos-
phorylated and total tau level in cerebrospinal fluid
(CSF) [43] and a decreased gray matter volume in
AD-related brain regions [44]. Insulin itself was also
reported to attenuate A�-induced neurotoxicity [45].
Thus, a higher PAlate may reduce A�-induced neu-
rodegeneration by decreasing insulin resistance or
facilitating insulin effect in the brain. Second, PA
may stimulate the release of neurotransmitters such
as norepinephrine and dopamine [46], which have
been suggested to have protective effects against
AD pathological changes [47, 48]. In mice, nore-
pinephrine stimulation of microglia was reported
to suppress A�-induced cytokine and chemokine
production [47]. Third, PA may modulate neuroin-
flammation related to AD neuropathologies through
upregulation of anti-inflammatory cytokines and
inhibition of microglial activation [49]. Microglial
cells with lipopolysaccharide activate inflammatory
cytokines when exposed to A� that can cause neu-
ronal damages [50]. In the present study, PAlate
showed a significant moderating role even after
adjusting for vascular risk factors. This finding indi-
cates that the effect of PAlate is not only by lowering
the vascular risks.

In contrast to PAlate, PAmid did not show a moderat-
ing effect on the relationship between A� burden and
AD neurodegeneration biomarkers. This result may
be due to the sequential pathological events toward
AD. In other words, sufficient “upstream” pathol-
ogy of A� accumulation precedes “downstream”
pathology of abnormal tau, neuronal dysfunction,
glial activation, neuronal loss, and atrophy [11]. A�
start to deposit commonly from middle age or early
stage of late life and AD-related neurodegenera-
tion develops mainly in late life period after A�
accumulation to some degree [9–11]. Hence, the pro-
tective role of PA which attenuates the negative effect
of A� on “downstream” pathology of neurodegen-
eration could be observed more easily in late-life
period when A� pathology accumulate sufficiently
than in midlife. The null finding for the effect of
PAmid on AD pathologies appears contrast to the
results from some previous studies which suggested
that PAmid may decrease the risk of dementia in

late-life [51]. However, the Whitehall Study reporting
on the 28-year follow-up of 10,308 people revealed
that moderate-to-vigorous physical activity lowered
dementia risk over 10, but not 28 years [52]. In
addition, a recent individual-level meta-analysis of
19 observational studies including 404,840 partic-
ipants’ data (mean baseline age 45.5 years; mean
follow-up duration 14·9 years) reported that there
was no increase in overall and AD dementia risk in
those who were physically inactive in the 10–15 year
period before diagnosis except in those with comor-
bid cardio-metabolic disease, whereas an increased
incidence of dementia was found in those who were
physically inactive in the 10-year period before diag-
nosis [53]. These findings are generally consistent
with our results showing the moderation effect of
PAlate but not that of PAmid.

It is a strong point of the present study that we
evaluated the relationships of both PAlate and PAmid
with in vivo AD pathologies using multi-modal brain
imaging in a relatively large number of participants.
Furthermore, it is a novel finding that PA had a dif-
ferential moderation effect on the relationship of A�
deposition with AD-CT and AD-CM according to the
age when PA were performed.

Nevertheless, a few limitations exist. First, as we
investigated the effects of PA cross-sectionally, it
is difficult to infer the causal relationship between
the variables and we could not fully exclude the
possibility of reverse causality (i.e., the possibility
that brain change itself may cause decreased PA
in late-life). Therefore, further longitudinal studies
need to be conducted to confirm the actual influ-
ence of PA on AD pathological changes. Second,
we used self-reported questionnaire to measure the
level of PA depending on the recall of the partic-
ipants. Although the questionnaire was proved to
have sufficient validity and reliability, some concerns
about the possibility of recall bias exist as individ-
uals with MCI were included. However, although
individuals with MCI have issues with their recent
memory, their remote memory is very well-preserved
[54]. Therefore, it is unlikely that individuals with
MCI reported their PA history more erroneously,
because the self-report for PA mainly depends on
remote memory rather than recent memory. Never-
theless, given time interval between recall and PA,
detailed recall of PAmid might have lower reliabil-
ity than that of PAlate. Third, we did not evaluate
tau pathology, despite its prime role in AD. Fur-
ther studies including tau PET or CSF tau level are
needed.
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Conclusion

In conclusion, our results indicate that physi-
cally active lifestyle in late-life, rather than that in
midlife, may delay AD-associated cognitive decline
by decreasing the A�-induced neurodegenerative
changes in old adults.
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