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Abstract.
Background: Previous studies indicated an association between Alzheimer’s disease (AD) dementia and air particulate matter
(PM) with aerodynamic diameter <10 �m (PM10), as well as smaller PM. Limited information, however, is available for the
neuropathological links underlying such association.
Objective: This study aimed to investigate the relationship between long-term PM10 exposure and in vivo pathologies of
AD using multimodal neuroimaging.
Methods: The study population consisted of 309 older adults without dementia (191 cognitively normal and 118 mild cognitive
impairment individuals), who lived in Republic of Korea. Participants underwent comprehensive clinical assessments, 11C-
Pittsburg compound B (PiB) positron emission tomography (PET), and magnetic resonance imaging scans. A subset of 78
participants also underwent 18F-AV-1451 tau PET evaluation. The mean concentration of PM with aerodynamic diameter
<10 �m over the past 5 years (PM10mean) collected from air pollution surveillance stations were matched to each participant’s
residence.
Results: In this non-demented study population, of which 62% were cognitively normal and 38% were in mild cognitive
impairment state, exposure to the highest tertile of PM10mean was associated with increased risk of amyloid-� (A�) positivity
(odds ratio 2.19, 95% confidence interval 1.13 to 4.26) even after controlling all potential confounders. In contrast, there
was no significant associations between PM10mean exposure and tau accumulation. AD signature cortical thickness and white
matter hyperintensity volume were also not associated with PM10mean exposure.
Conclusion: The findings suggest that long-term exposure to PM10 may contribute to pathological A� deposition.
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INTRODUCTION

There is a great deal of evidence that air particulate
matter (PM) is associated with adverse health effects,
thereby exerting various negative impacts on public
health [1–4]. Accumulating evidence also suggests
that PM may be neurotoxic and have an adverse effect
on the central nervous system (CNS) [5, 6].

PM can be categorized based on the aerodynamic
diameter size: 1) less than 10 �m (PM10), 2) less
than 2.5 �m (PM2.5), or 3) less than 0.1 �m (PM0.1)
[4]. In regard of the influence of PM on Alzheimer’s
disease (AD), many human studies demonstrated
that PM2.5 was associated with increased risk
of AD dementia or cognitive impairment [7–19].
Although not frequently studied compared to PM2.5,
PM10 was also reported to be related with AD
dementia [20] and amnestic type mild cognitive
impairment (MCI), a high-risk state of AD demen-
tia [19].

PM can affect CNS through both direct and indi-
rect pathways [6, 21]. PM2.5 or smaller particles
may directly transmit through the olfactory bulb or
through the systemic circulation into the brain and
trigger CNS damage via direct pathway [22–24]. In
contrast, nasal epithelial transmission or mechanical
inhalation of PM10, as well as PM2.5, may produce
systemic inflammation and the released inflamma-
tory cytokines may damage the CNS through indirect
pathway [25–28]. Therefore, all size fractions of PM
should be considered as possible neurotoxins or risk
factors for AD-related brain changes or cognitive
decline [19, 29].

In regard of neuropathological links underlying
the association between PM and AD, a postmortem
brain study demonstrated that individuals living in
severely polluted areas were more likely to have
neuroinflammation and amyloid-� 42 (A�42) accu-
mulation in brain compared to those living in control
areas [30]. Preclinical studies using animal mod-
els [7, 31–33] also showed that exposure to PM2.5
induced AD-related brain pathologies. However, lit-
tle information is available regarding the influence of
chronic PM10 exposure on AD-related neuropatho-
logical changes.

In this context, we investigated the associations
of long-term exposure to PM10 with cerebral A�
and tau deposition on positron emission tomography
(PET) as well as AD-type regional neurodegenera-
tion and white matter hyperintensities (WMH) on
magnetic resonance imaging (MRI) in non-demented
older adults.

MATERIALS AND METHODS

Study population

The study population consisted of 309 older adults
without dementia [191 cognitively normal (CN) sub-
jects and 118 with MCI] who were recruited from
the Korean Brain Aging Study for the Early Diagno-
sis and Prediction of Alzheimer’s Disease (KBASE),
an ongoing prospective cohort study that began in
2014 [34].

Participants were 65 years old or older, and were
recruited between April 2014 and November 2016.
The data from the baseline visit were utilized in
this study. The inclusion criteria for the CN group
were: 1) age between 65 and 90 years (inclusive);
2) no diagnosis of MCI or dementia; and 3) global
Clinical Dementia Rating (CDR) score of 0 [35].
Inclusion criteria for participants with MCI were as
follows: 1) memory complaints confirmed by a reli-
able informant; 2) objective memory impairments;
3) preserved global cognition; 4) independence in
functional activities; and 5) no diagnosis of demen-
tia. With regard to criterion (2), the age-, education-,
and sex-adjusted z-scores for at least one of four
episodic memory tests were <–1.0. The four mem-
ory tests were the Word List Memory, Word List
Recall, Word List Recognition, and Constructional
Recall tests, which are included in the Korean ver-
sion of the Consortium to Establish a Registry for
Alzheimer’s Disease (CERAD-K) neuropsycholog-
ical battery [36]. All MCI participants had a CDR
score of 0.5. The exclusion criteria were as follows:
1) presence of a major psychiatric illness, including
alcohol-related disorders; 2) significant neurological
or medical conditions or comorbidities that could
affect mental function; 3) contraindications for MRI
(e.g., pacemaker or claustrophobia); 4) illiteracy;
5) the presence of significant visual/hearing diffi-
culties and/or severe communication or behavioral
problems that would make clinical examinations or
brain scans difficult; 6) taking an investigational drug;
and 7) pregnant or breastfeeding. Additional infor-
mation regarding the recruitment procedure of the
KBASE cohort was presented previously [34]. The
study protocol was approved by the Institutional
Review Boards of Seoul National University Hospital
and SNU-SMG Boramae Center (Seoul, Republic of
Korea) and conducted in accordance with the recom-
mendations of the current version of the Declaration
of Helsinki. All study participants and/or their care-
givers provided written informed consent.
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Clinical, neuropsychological, and laboratory
assessments

All participants underwent comprehensive clini-
cal and neuropsychological assessments according to
a standardized clinical assessment protocol incorpo-
rating the CERAD-K clinical assessment [37]. The
protocol included various assessment tools for eval-
uation of clinical diagnosis, severity, activities of
daily living, depression status, current or past medical
comorbidities, use of medications, smoking status,
socioeconomic status (SES), and a large amount of
information on lifestyle factors. To acquire accurate
information, reliable informants were interviewed
and medical records were reviewed. KBASE neu-
ropsychological assessments were performed accord-
ing to the standardized protocol, which incorporated
the CERAD-K neuropsychological battery [36]. The
participants also underwent laboratory assessments
including apolipoprotein E (APOE) genotyping.

Air particulate matter exposure

The exposure variable of this study was the mean
concentration of PM with aerodynamic diameter
<10 �m (PM10) over the past 5 years from the base-
line assessment (PM10mean). During the study period,
the raw PM10 concentration data were measured con-
tinuously from 276 air pollution monitoring stations
distributed across Republic of Korea using the �-ray
absorption method on an hourly basis (24 times a day
and 7 days a week). From the raw data, the annual
mean for each station was calculated by the Statis-
tics Division of the Korean Ministry of Environment,
and were distributed publicly through the Air Korea
website (http://www.airkorea.or.kr). Individual par-
ticipants were matched with their nearest station
according to their residential address. To protect the
privacy of the participants, only the streets, not build-
ing numbers or house numbers of the participants’
addresses, were collected. For this reason, the mid-
point of each residential street was matched with the
nearest monitoring station, and the distance between
the two points were also measured. Three participants
who lived more than 10 kilometers (km) away from
the nearest monitoring station were excluded from the
study (the distances were 22.9, 38.9, and 40.2 km).
The usage of the residential address was separately
reviewed and approved by the Institutional Review
Board of Seoul National University Hospital (Seoul,
Republic of Korea). The PM10mean was calculated for
each participant from the annual mean values. Finally,

referring to previous reports that suggested non-linear
relationship between PM exposure and CNS toxicity
[20, 38], PM10mean was stratified into the three ter-
tile groups: the lowest tertile (34.8 to 44.8 �g/m3), the
medium tertile (45.0 to 47.8 �g/m3), and the highest
tertile (48.0 to 67.0 �g/m3) groups. The tertile groups
of PM10mean were used as a final exposure variable.

Neuroimaging measures

All subjects (n = 309) underwent simultaneous
three-dimensional 11C Pittsburg compound B (PiB)-
PET and T1-weighted MRI using a 3.0T Biograph
mMR (PET-MR) scanner (Siemens) and a subset of
subjects (n = 78) underwent 18F-AV-1451 PET scans
(Siemens) using a Biograph True point 40 PET/CT
scanner (Siemens) according to the manufacturer’s
guidelines. While 11C PiB-PET and brain MRI were
performed during the baseline visit, 18F-AV-1451
PET imaging was performed after an average of 2.6
(standard deviation 0.3) years from the baseline visit.
The details of 11C PiB-PET, 18F-AV-1451 PET, and
MRI acquisition and preprocessing are reported else-
where [34, 39].

To estimate the cerebral A� burden, a global corti-
cal region of interest (ROI) consisting of the frontal,
lateral parietal, posterior cingulate-precuneus, and
lateral temporal regions was defined to characterize
the global PiB retention level. A global PiB reten-
tion value, i.e., the standardized uptake value ratio
(SUVR), was calculated by dividing the mean value
for all voxels within the ROI by the mean cerebellar
uptake value in the same image [40]. Each partici-
pant was classified as A�-positive if the global SUVR
value was >1.21 [41]. Considering the bimodal dis-
tribution of our PiB data, only A� positivity was used
as an outcome variable.

To estimate cerebral tau burden, we created 18F-
AV-1451 PET SUVR images normalized by the mean
inferior cerebellar gray matter uptake, and defined
an a priori ROI of AD signature regions of tau
accumulation, which is a size-weighted average of
partial volume-corrected uptake in entorhinal, amyg-
dala, parahippocampal, fusiform, inferior temporal,
and middle temporal ROIs, based on a previous report
[42]. AV-1541 SUVR of the abovementioned ROI
was used as an outcome variable.

To measure the AD-specific regional neurodegen-
eration, the AD-signature cortical thickness (AD-CT)
was calculated for each participant. AD-CT (cm)
was defined as the mean cortical thickness value of
AD-signature regions, including the middle temporal,

http://www.airkorea.or.kr
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entorhinal, inferior temporal, and fusiform gyrus, as
described previously [43].

To determine the volume (cm3) of WMH, we
utilized the previously reported validated automatic
procedure [44], with two modifications. An optimal
threshold of 70 was applied, compared to the thresh-
old of 65 used in the original paper, as it was more
suitable for our data. As a preparative preliminary
analysis of the data, randomly selected 20% of the
total scans were processed using various thresholds
(e.g., 60, 65, 70, and 75). The derived/processed
WMH mask images were overlaid on the junction
map [44], and the boundaries of the WMH were
visually reviewed by an experienced image analyst
(DY). Comparisons between the WMH masks using
four different thresholds were performed visually, in
addition to reviewing of the extracted voxels inten-
sity histograms. The threshold of 70 yielded the best
mask that most closely aligned with the boundaries.
The mask from the threshold of 65, which was used
in the original paper, often included the voxels close
to the boundaries but that are not clearly identified
as WMH. This may be due to the differences of the
scanner properties or the reconstruction protocol. In
addition, we did not use diffusion-weighted imaging
in the current automated procedure because individ-
uals with acute cerebral infarction were not enrolled
in our study. Using the final WMH candidate images,
WMH volumes were extracted based on lobar ROIs
in the native space of each subject [45].

Statistical analysis

One-way analysis of variance and linear-by-
linear association were used to compare variables
among tertile groups of PM10mean. To test the
associations between tertile groups of PM10mean
and neuroimaging parameters, multivariate linear or
logistic regression analyses were performed as appro-
priate. Three models were defined. The first model
did not include any covariates, the second model
included age and sex as covariates, and the third
model included all potential covariates, including
age, sex, education level, annual income, vascular risk
score, smoking status, APOE �4 positivity, and cog-
nitive status, i.e., CN or MCI. Education level was
the total number of years of formal education, and
annual income was categorized into three groups:
below the minimum cost of living (MCL), above the
MCL but below twice the MCL, more than twice
the MCL. The MCL was determined according to
the administrative rules published by the Ministry of

Fig. 1. Violin plots displaying individual distributions of global
PiB SUVR among PM10mean tertile groups and the thresholds for
amyloid-� positivity PiB, Pittsburgh Compound B; SUVR, stan-
dardized uptake value ratio; PM10mean, 5-year mean concentration
of particulate matter with aerodynamic diameter <10 �m.

Health and Welfare, Republic of Korea, in Novem-
ber 2012. The MCL was 572,168 Korean Won for
a single-person household, with addition of 286,840
Korean Won for each additional housemate. Smok-
ing status was categorized into three groups: current
smoker, former smoker, never smoked.

To additionally investigate whether there were
any interactions between tertile groups of PM10mean
and APOE �4 positivity on neuroimaging parame-
ters referring to the previous epidemiological studies
[16], we added an interaction term, i.e., tertile groups
of PM10mean×APOE �4 positivity, in the regression
models. For sensitivity analyses, the associations of
quartiled PM10mean with imaging parameters were
tested with identical statistical methods. Interaction
and sensitivity analyses were performed only for
statistically significant associations. All statistical
analyses were performed using IBM SPSS Statis-
tics 24 (IBM Corp., Armonk, N.Y., USA), and the
drawing of violin plot in Fig. 1 was done using R
3.5.2 (The R Foundation for Statistical Computing,
Vienna, Austria).

RESULTS

Subject characteristics

Table 1 shows the clinical and demographic char-
acteristics of the participants by tertile groups of
PM10mean. There were no significant differences
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Table 1
Characteristics of participants by PM10mean tertile groups

Variables Tertile 1 Tertile 2 Tertile 3 χ2 or F p

n 104 102 103
PM10mean (�g/m3) 34.8 to 44.8 45.0 to 47.8 48.0 to 67.0
Age 75.2 ± 6.0 73.6 ± 5.4 74.1 ± 4.8 2.22 0.111
Sex, female (%) 50 (48.1) 69 (67.6) 58 (56.3) 1.45 0.229
Years of education 10.6 ± 5.1 10.2 ± 4.7 11.3 ± 4.9 1.12 0.329
Annual income 2.63 0.105

<MCL 13 (12.5) 6 (5.9) 13 (12.6)
≥MCL, <2 × MCL 53 (51.0) 50 (49.0) 37 (35.9)
≥2 × MCL 38 (36.5) 46 (45.1) 53 (51.5)

Smoking status 0.57 0.451
Never 69 (66.4) 82 (80.4) 70 (68.0)
Past smoker 30 (28.8) 17 (16.7) 32 (31.1)
Current smoker 5 (4.8) 3 (2.9) 1 (1.0)

Vascular risk score 20.7 ± 17.3 19.1 ± 17.1 20.1 ± 15.2 0.23 0.795
Diagnosis, MCI (%) 38 (36.5) 45 (44.1) 35 (34.0) 0.14 0.708
CDR-SB 0.54 ± 0.81 0.61 ± 0.75 0.52 ± 0.84 0.32 0.727
MMSE 25.1 ± 3.5 24.6 ± 3.3 25.3 ± 3.2 1.11 0.332
APOE �4 positive, n (%) 23 (22.1) 24 (23.5) 30 (29.1) 1.35 0.245
Distance from monitoring station (km) 2.02 ± 1.73 1.93 ± 1.09 2.36 ± 2.05 1.19 0.153
PiB positive, n (%) 31 (29.8) 33 (32.4) 47 (45.6) 5.60 0.018
PiB SUVR 1.31 ± 0.37 1.33 ± 0.39 1.33 ± 0.36 0.15 0.858
AV-1451 SUVRa 1.67 ± 0.76 1.52 ± 0.44 1.52 ± 0.67 0.45 0.641
AD-CT (cm) 2.74 ± 0.24 2.77 ± 0.22 2.77 ± 0.18 0.82 0.442
WMH volume (cm3) 6.42 ± 5.20 6.46 ± 5.36 6.14 ± 5.29 0.10 0.906

Data for continuous variables are presented as means ± standard deviation and were analyzed by one-way ANOVA with F values presented
in the table. Categorical variables are presented as n (%) and were analyzed by linear-by-linear association test with χ2 values presented
in the table. aNumber of subjects = 78 (Tertile 1, 26; Tertile 2, 20; Tertile 3, 32), performed after an average of 2.6 (standard deviation
0.3) years from the baseline visit. PM10mean, 5-year mean concentration of particulate matter with aerodynamic diameter <10 �m; MCL,
minimum cost of living; MCI, mild cognitive impairment; CDR-SB, Clinical Dementia Rating sum of box score; MMSE, Mini-Mental State
Examination; APOE, apolipoprotein E; PiB, Pittsburgh Compound B; SUVR, standardized uptake value ratio; AD-CT, Alzheimer’s disease
signature cortical thickness; WMH, white matter hyperintensity.

in demographic or clinical variables among tertile
groups of PM10mean. Also, there were no statis-
tically significant differences between participants
who underwent 18F-AV-1451 PET and those who did
not in terms of demographic or clinical variables.

Air particulate matter concentration and
neuroimaging parameters

Linear-by-linear association test showed that the
rate of A� positivity was significantly higher in the
highest tertile group of PM10 mean (45.6%) than in the
lowest (29.8%) and medium (32.4%) tertile groups,
while one-way analysis of variance showed that
global PiB retention was not different among tertile
groups of PM10 mean (Table 1 and Fig. 1). Multi-
variate logistic regression analyses also revealed that
A� positivity was significantly associated with tertile
groups of PM10mean in all three models (Table 2 and
Fig. 2). Regardless of covariates, the highest tertile of
PM10mean exposure was associated with increased
risk of A� positivity compared to the lowest ter-

tile (reference). On the other hand, both analyses
of variance and multiple linear regression analyses
demonstrated that tertile groups of PM10mean were
not associated with cerebral tau deposition, AD-CT,
and WMH volume (Tables 1 and 2).

Interaction and sensitivity analyses

There were no interactions between tertile groups
of PM10mean and APOE �4 positivity on A� positiv-
ity (Table 3).

Sensitivity analysis using quartile groups of
PM10mean yielded similar results for the association
between PM10mean and A� positivity. Regardless of
covariates, the highest quartile of PM10mean exposure
was associated with increased risk of A� positivity
(Table 4).

DISCUSSION

To summarize the results of this study, long-term
exposure to the highest tertile of PM10 was associated
with increased risk of A� positivity in older adults
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Table 2
Associations of PM10mean tertile groups with neuroimaging parameters

Model Tertile 1 Tertile 2 Tertile 3

PiB positivity
Model 1 Reference OR = 1.13 (0.62 to 2.03) OR = 1.98 (1.12 to 3.50)

p = 0.693 p = 0.020
Model 2 Reference OR = 1.18 (0.64 to 2.15) OR = 2.05 (1.15 to 3.66)

p = 0.596 p = 0.015
Model 3 Reference OR = 1.05 (0.53 to 2.05) OR = 2.19 (1.13 to 4.26)

p = 0.899 p = 0.020
AV-1451 SUVRa

Model 1 Reference B = –0.151 (–0.539 to 0.237) B = –0.147 (–0.492 to 0.197)
p = 0.440 p = 0.397

Model 2 Reference B = –0.142 (–0.541 to 0.257) B = –0.143 (–0.493 to 0.207)
p = 0.481 p = 0.418

Model 3 Reference B = –0.153 (–0.516 to 0.209) B = –0.134 (–0.448 to 0.181)
p = 0.402 p = 0.400

AD-CT (cm)
Model 1 Reference B = 0.033 (–0.027 to 0.092) B = 0.034 (–0.025 to 0.094)

p = 0.281 p = 0.258
Model 2 Reference B = 0.003 (–0.052 to 0.057) B = 0.017 (–0.037 to 0.071)

p = 0.924 p = 0.542
Model 3 Reference B = 0.008 (–0.043 to 0.059) B = 0.023 (–0.028 to 0.075)

p = 0.753 p = 0.375
WMH volume (cm3)

Model 1 Reference B = 0.041 (–1.508 to 1.591) B = –0.279 (–1.802 to 1.245)
p = 0.958 p = 0.719

Model 2 Reference B = 0.623 (–0.861 to 2.106) B = –0.053 (–1.390 to 1.496)
p = 0.409 p = 0.942

Model 3 Reference B = 0.491 (–1.023 to 2.006) B = 0.082 (–1.393 to 1.557)
p = 0.523 p = 0.913

The results of multivariate logistic or linear regression analyses are presented with OR or B coefficient values, 95%
CI, and p-values. Model 1 did not include any covariates, model 2 included age and sex as covariates, and model 3
included all potential covariates, including age, sex, education level, annual income, vascular risk score, smoking
status, APOE �4 positivity, and cognitive status. aNumber of subjects = 78 (Tertile 1, 26; Tertile 2, 20; Tertile 3,
32), performed after an average of 2.6 (standard deviation 0.3) years from the baseline visit. PM10mean, 5-year
mean concentration of particulate matter with aerodynamic diameter <10 �m; OR, odds ratio; SUVR, standardized
uptake value ratio; AD-CT, Alzheimer’s disease signature cortical thickness; WMH, white matter hyperintensity;
CI, confidence interval; APOE, apolipoprotein E.

Fig. 2. Associations of PM10mean tertile groups with amyloid-
� positivity. The results of multivariate logistic regression are
depicted with OR values and 95% CI. Model 1 did not include
any covariates, model 2 included age and sex as covariates, and
model 3 included all potential covariates, including age, sex,
education level, annual income, vascular risk score, smoking sta-
tus, APOE �4 positivity, and cognitive status. PM10mean, 5-year
mean concentration of particulate matter with aerodynamic diam-
eter <10 �m; OR, odds ratio; CI, confidence interval; APOE,
apolipoprotein E.

without dementia. However, there was no significant
association between PM10 exposure and tau accumu-
lation. Also, AD-type regional neurodegeneration, or
white matter changes were not associated with PM10.
To the best of our knowledge, this is the first study
to investigate the association between chronic PM10
exposure and in vivo cerebral A� and tau deposition
in humans.

Several previous studies suggested a possible
association between PM10 and AD. An epidemi-
ological study conducted in Taiwan indicated that
long-term exposure to PM10 was associated with
higher prevalence of AD dementia [20]. Similarly,
another epidemiological study performed in Ger-
many reported significant association between PM10
exposure and prevalence of amnestic type MCI, a
high-risk state of AD dementia [19]. The specific
association between chronic PM10 exposure and A�
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Table 3
Interaction analysis of tertile groups of PM10mean and APOE �4 positivity on A� positivity

OR (95% CI) Wald p

Tertile 1 Reference
Tertile 2 1.03 (0.46 to 2.31) 0.01 0.937
Tertile 3 2.36 (1.08 to 5.16) 4.68 0.031
APOE �4 positivity 4.76 (1.60 to 14.18) 7.83 0.005
Tertile 1 × APOE �4 positivity Reference
Tertile 2 × APOE �4 positivity 1.04 (0.24 to 4.57) <0.01 0.960
Tertile 3 × APOE �4 positivity 0.76 (0.18 to 3.32) 0.13 0.764

The results of multivariate logistic regression analyses including interaction terms are presented with
OR, 95% CI, Wald, and p-values. As for the covariates, all potential covariates, including age, sex,
education level, annual income, vascular risk score, smoking status, APOE �4 positivity, and cognitive
status were adjusted as appropriate. PM10mean, 5 year mean of concentration of particulate matter with
aerodynamic diameter of <10 �m; APOE, apolipoprotein E; OR, odds ratio; CI, confidence interval.

Table 4
Results of sensitivity analyses showing the association of quartile groups of PM10mean with amyloid-� positivity

Model Quartile 1 Quartile 2 Quartile 3 Quartile 4

Model 1 Reference OR 1.46 (0.74 to 2.88) OR 1.23 (0.62 to 2.44) OR 2.05 (1.06 to 3.97)
p = 0.276 p = 0.562 p = 0.034

Model 2 Reference OR 1.52 (0.76 to 3.02) OR 1.35 (0.66 to 2.73) OR 2.15 (1.10 to 4.19)
p = 0.234 p = 0.411 p = 0.025

Model 3 Reference OR 1.81 (0.83 to 3.97) OR 1.32 (0.60 to 2.90) OR 2.60 (1.20 to 5.66)
p = 0.137 p = 0.486 p = 0.016

The results of multivariate logistic regression analyses are presented with OR values, 95% CI and p-values. As for
the covariates, model 1 did not include any covariates. Model 2 included age and sex, and model 3 included all
potential covariates, including age, sex, education level, annual income, vascular risk score, smoking status, APOE
�4 positivity, and cognitive status. PM10mean, 5-year mean of concentration of particulate matter with aerodynamic
diameter of <10 �m; OR, odds ratio; CI, confidence interval; APOE, apolipoprotein E.

positivity observed in the present study was consis-
tent with these previous reports and presented the
first evidence for a pathological link between chronic
PM10 exposure and AD.

The results of this study indicated a nonlinear
dose–response relationship between PM10 exposure
and pathological A� deposition. The risk of A�
positivity was increased only in the highest tertile
(>48.0 �g/m3) group, but not in the medium tertile
group. Similar results were reported in an epidemio-
logical study performed in Taiwan. Wu et al. reported
increased risk of AD dementia only in the highest
tertile (PM10 > 49.2 �g/m3) group (odds ratio (OR)
4.17, 95% confidence interval (CI) 2.31 to 7.54), but
not in the medium tertile group (OR 1.68, 95% CI
0.94 to 3.00) [20]. The thresholds for increased risk
were similar between the two studies. This nonlinear
dose–response relationship between PM10 and brain
health has also been suggested by mortality studies.
Daniels et al. reported that although cardiovascu-
lar and respiratory deaths were linearly associated
with PM10 without a threshold, deaths due to other
causes, including CNS diseases, were more fitted to a
threshold model [38]. The results of the present study

suggested a threshold level of PM10, i.e., 48.0 �g/m3,
below which the concentration should be maintained
to prevent the accumulation of pathological cerebral
A� and, eventually, to minimize the PM10-related
risks for AD dementia. Several studies performed
in countries where PM10 concentration is relatively
well regulated indicated a linear association between
PM10 concentration and cognition [18, 29]. The
relationship between PM10 and cognition or brain
change may be linear in the range of PM10 concen-
tration below the threshold.

Despite the significant association between
PM10mean tertile group and A� positivity, there was
no association between PM10mean tertile group and
global PiB SUVR in this study. This discrepancy
may be explained by the characteristic bimodal dis-
tribution of cerebral A� retention values, especially
in the cognitively healthy population [46]. Figure 1
demonstrates such bimodal distribution of global PiB
SUVR values for each PM10 tertile group and the
threshold for cerebral A� positivity, and the discrep-
ancy can be better explained by the figure. Given the
characteristics of the bimodal distribution, logistic
regression analyses with dichotomous variables for
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A� positivity may be more suitable for elucidating the
relationship between PM10 tertile group and cerebral
A� pathology.

Although a previous study reported on the moder-
ation effects of APOE �4 positivity on the association
between PM10 and cognitive function [16], the cur-
rent results from the interaction analysis indicated
that APOE �4 positivity did not moderate the asso-
ciation between PM10 and cerebral A� deposition.
This difference may be related to the study partici-
pants’ stages of AD progression; while A� deposition
begins at the earliest stage of AD development, cogni-
tive decline manifests at the later stage of the disease
progression. APOE �4 may moderate the influence
of PM10 on the clinical manifestations of cognitive
impairment but not the effect of earlier A� deposition.

In contrast to A� deposition, tau burden was not
associated with PM10 tertile groups, which may be
explained by the time course of the pathogenesis
of AD. While A� deposition is initiated at least a
decade before the symptom onset and almost saturate
before the symptoms manifest [47–49], tau deposi-
tion occurs just before or close to manifestation of
cognitive declines [50–52] and the early tau deposi-
tion is located only in the very restricted regions with
small amount [53]. Given that only non-demented
(50 CN and 28 MCI) individuals were included in the
current analysis on tauopathy and the limited sensitiv-
ity and off-target bindings of currently used tau PET
modality [54, 55], the degree or variation of tau depo-
sition may be subtle to yield significant association
with PM10.

Unlike a previous neuroimaging study using brain
MRI showed that PM10 exposure is associated with
neurodegeneration changes [56], the results showed
that the AD-CT and WMH volume were not asso-
ciated with PM10 tertile groups. There are several
possible reasons for this discrepancy. First, the dis-
crepancy may be explained by differences in PM10
level between the study settings; the study by Power
and colleagues indicated a significant association
in a setting where the PM10 concentration was
16–31 �g/m3 [56], which was far below that of the
present study, i.e., 34–67 �g/m3. PM10 exposure
may have a dose–response relationship with brain
atrophy or white matter vascular changes below a
certain level, but have a ceiling effect above this
level. All or most of our subjects may have been
exposed to PM10 levels above this level and, there-
fore, did not show any apparent correlation between
PM10 increase and brain changes on MRI. Second,
another possible explanation for the discrepancy may

be related to the proportion of smokers in the study
population; the proportion of participants who were
never smokers was much higher in the present study
(70%) compared to the previous study (52%). As
smoking is another source of PM10 [57], and is a
well-known risk factor for AD [58, 59], it is rea-
sonable to speculate that smoking and PM10 may
have harmful effects on brain health in an additive
or synergistic manner. Therefore, the higher pro-
portions of smokers in previous studies may have
synergistically exacerbated the neurotoxic effect of
PM10 on brain MRI measures. Additional interac-
tion analysis, however, showed that there was no
moderation effect of smoking status (never smoker
versus past or current smoker) on the association
between PM10 and brain MRI measures (Supple-
mentary Table 1). Third, subjects with a history of
severe cardiovascular or cerebrovascular disease or
with cerebral infarcts and hemorrhages detected on
brain MRI were excluded from the present study [34].
As PM10 is a well-known risk factor for both cardio-
vascular and cerebrovascular diseases [60–63], the
exclusion of such subjects with severe cardiovascu-
lar or cerebrovascular disease may have weakened
the association between PM10 and WMH. Finally,
our study targeted only ROIs showing AD-specific
neurodegeneration, while previous studies used vari-
ous ROIs including regions unrelated to AD. Similar
to our findings, some previous studies focusing on
AD-specific regions, such as hippocampal volume
[56] and AD-signature region volume [56], did not
find significant associations between PM10 and atro-
phy. However, additional explorative analyses did not
show any association between PM10 with brain vol-
umetric measures used in the previous study, i.e.,
deep gray volume [56] (Supplementary Table 2), sug-
gesting that the other possibilities mentioned above
should also be considered.

This study had several limitations. First, individu-
als with serious medical or psychiatric comorbidities
were excluded from our cohort. Therefore, caution
is required regarding generalizability of the results.
Physically or mentally ill patients may be more vul-
nerable to the influence of PM or air pollution.
Second, as the data on PM2.5 for the study par-
ticipants were only available after 2015, we could
not incorporate these data in our analyses. How-
ever, as PM2.5 is a subset of PM10 and annual
mean PM2.5/PM10 ratio was reported to be steady
in various studies [15, 64–69], PM10 used in this
study may also reflect the variations of PM2.5. The
PM2.5/PM10 ratio in Republic of Korea was reported
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to be around 0.45–0.55 [65, 66]. Nevertheless, future
studies incorporating PM2.5 data would be helpful
to gain better understanding for the effects of PM
on AD-related brain pathology. In addition, other
types of air pollutants, such as ozone, nitrogen or
sulfur compounds, which could covary with the PM
concentration and thereby confound the association
between PM and brain pathologies, also need to be
considered in future analyses. Third, as information
on residential address was gathered once, at the base-
line visit, there may have been misclassifications of
the PM10 exposure level. However, the results of the
Korea Housing Survey 2017 (http://stat.molit.go.kr)
from the Ministry of Land, Infrastructure and Trans-
port, Republic of Korea, showed that older Korean
adults live in one place for an average of 15.5 years.
This would reduce concerns regarding the proportion
of misclassification during the 5-year study period.
Fourth, exposure for 5 years may not be long enough
to reveal the association between PM10 and brain
health. Recent studies focusing on lifelong exposure
or younger populations suggested that the adverse
effects of PM may begin at an earlier stage of life
than expected [53, 70–72]. In addition, occupational
hazards and environmental disasters before late-life
can also expose PM to individuals. Therefore, further
studies including longer and earlier periods of expo-
sure are still needed. Finally, as the tau burden was
measured after an average of 2.6 years from the base-
line visit, there was a temporal gap between PM10
exposure and the measurement of tau. However, the
neuropsychological profiles at baseline assessment
were similar to those nearest Tau PET acquisition
(Supplementary Table 3). As tau burden is closely
correlated with cognitive function [73, 74], tau bur-
den at baseline was likely to be similar to that actually
measured by tau PET.

The findings suggest that long-term exposure to
PM10 may contribute to pathological A� deposition.
The results also provided additional scientific evi-
dence to prompt global and regional health authorities
or governments to intensify their efforts, to reduce the
adverse effects of PM on brain health and dementia.
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