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Abstract

Background

Although some human studies have reported gut microbiome changes in individuals with

Alzheimer’s disease (AD) dementia or mild cognitive impairment (MCI), gut microbiome

alterations in preclinical AD, i.e., cerebral amyloidosis without cognitive impairment, is

largely unknown.

Objective

We aimed to identify gut microbial alterations associated with preclinical AD by comparing

cognitively normal (CN) older adults with cerebral Aβ deposition (Aβ+ CN) and those without

cerebral Aβ deposition (Aβ− CN).

Methods

Seventy-eight CN older participants (18 Aβ+ CN and 60 Aβ− CN) were included, and all par-

ticipants underwent clinical assessment and Pittsburg compound B–positron emission

tomography. The V3–V4 region of the 16S rRNA gene of genomic DNA extracted from

feces was amplified and sequenced to establish the microbial community.

Results

Generalized linear model analysis revealed that the genera Megamonas (B = 3.399,

q<0.001), Serratia (B = 3.044, q = 0.005), Leptotrichia (B = 5.862, q = 0.024) and Clostridium

(family Clostridiaceae) (B = 0.788, q = 0.034) were more abundant in the Aβ+ CN group

than the Aβ− CN group. In contrast, genera CF231 (B = −3.237, q< 0.001), Victivallis (B = −-

3.447, q = 0.004) Enterococcus (B = −2.044, q = 0.042), Mitsuokella (B = −2.119, q = 0.042)

and Clostridium (family Erysipelotrichaceae) (B = −2.222, q = 0.043) were decreased in Aβ+
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CN compared to Aβ− CN. Notably, the classification model including the differently abun-

dant genera could effectively distinguish Aβ+ CN from Aβ− CN (AUC = 0.823).

Conclusion

Our findings suggest that specific alterations of gut bacterial taxa are related to preclinical

AD, which means these changes may precede cognitive decline. Therefore, examining

changes in the microbiome may be helpful in preclinical AD screening.

Introduction

A growing body of evidence indicates that alterations in the gut microbiome are associated

with various brain diseases via the so-called brain–gut–microbiota axis [1], as well as with

other systemic diseases such as obesity, Type II diabetes mellitus (DM) [2], and systemic lupus

erythematosus [3].

Particularly with regard to Alzheimer’s disease (AD), recent animal studies have strongly

suggested a relationship between gut microbial alteration and the development of the disease.

A study demonstrated that the gut microbiome was altered in APP/PS1 mice, and such alter-

ation was related to increased cerebral beta-amyloid (Aβ) burden [4, 5]. Additionally, cerebral

Aβ deposition was significantly reduced in germ-free APP/PS1 mice, whereas recolonization

of these mice increased cerebral Aβ levels [4]. Moreover, a recent study revealed that trans-

plantation of a healthy gut microbiome reduced Aβ deposition in ADLPAPT mice, recently

developed AD-like pathology transgenic mice [6].

Several human studies have also demonstated that gut microbiome composition differed in

individuals with clinically defined Alzheimer’s disease (AD) dementia or mild cognitive

impairment (MCI) compared to normal controls [7–10]. Dysbiosis indexed by alpha or beta

diversities were also found in MCI and AD dementia patients [7–10]. However, specific alter-

ations of the gut microbiome associated with AD dementia or MCI have been inconsistent

among studies. Such inconsistent findings may in part result from the fact that dementia or

cognitive impaired state itself could alter dietary patterns and lifestyles [11, 12] and therefore

microbiome composition.

Cerebral Aβ deposition, the core pathology of AD, begins more than a decade earlier before

cognitive symptoms appear [13]. Recent advances of AD neuroimaing biomarkers, particu-

larly, amyloid positron emission tomography (PET) makes it possible to detect individuals in

the preclinical stage of AD who have Aβ deposition in their brain but are still cognitively

unimpaired [14, 15]. Early therapeutic intervention at the preclinical stage is getting more

attention as evidence supporting the risk of clinical progression from the preclinical AD accu-

mulates [13, 16].

To clarify the contribution of gut microbial alteration to cerebral Aβ pathology indepen-

dently of the influence of dementia or cognitive impairment including dietary habit and life-

style changes [11, 12], it is necessary to investigate preclinical AD patients. Yet, to date, few

information is available for the gut microbiota in preclinical AD. Against this background, we

aimed to identify gut microbial alterations associated with preclinical AD by comparing the

gut microbiome in cognitively normal (CN) old adults with cerebral Aβ deposition (Aβ+ CN)

and in those without cerebral Aβ deposition (Aβ− CN).
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Methods

Participants

This study was conducted as part of the Korean Brain Aging Study for Early Diagnosis and

Prediction of Alzheimer’s Disease (KBASE) [17], an ongoing prospective study launched in

2014. In the present study, we included 78 CN participants between 65 and 90 years of age.

The CN subjects did not have dementia or MCI and had global Clinical Dementia Rating

(CDR) scores of 0. The exclusion criteria were as follows: 1) presence of a major psychiatric ill-

ness; 2) significant neurological or medical conditions that could affect mental function; 3)

current serious gastrointestinal (GI) disorders that could affect gut microbiome including GI

tract cancers and inflammatory bowel diseases; 4) contraindications for an MRI scan (e.g.,

pacemaker or claustrophobia); 5) illiteracy; 6) the presence of significant visual/hearing diffi-

culties and/or severe communication or behavioral problems that would make clinical exami-

nations or brain scans difficult; 7) currently taking any antibiotics; 8) taking an investigational

drug; and, 9) pregnant or breastfeeding. All participants underwent standardized clinical

assessments performed by trained psychiatrists based on the KBASE clinical assessment proto-

col, which includes the Korean version of the Consortium to Establish a Registry for Alzhei-

mer’s Disease (CERAD-K) Assessment Packet [17, 18]. This study was approved by the

Institutional Review Board of Seoul National University Hospital in Seoul, Republic of Korea.

The study protocol followed the recommendations of the current version of the Declaration of

Helsinki. All participants gave written informed consent.

Measurement of cerebral amyloid deposition

We used a 3.0T Biograph mMR (PET-MR) scanner (Siemens Healthcare, Erlangen, Germany)

according to the manufacturer’s approved guidelines to acquire 3D [11C] Pittsburg compound

B (PiB)–PET images, simultaneously with 3D T1-weighted MRI. We injected 555 MBq of
11C-PiB (range, 450–610 MBq) intravenously and obtained a 30-min emission scan 40 minutes

after infusion. The PiB-PET data collected in list mode were processed for routine corrections

such as uniformity, UTE-based attenuation, and decay corrections. Images were reconstructed

into a 256 × 256 image matrix using iterative methods (six iterations with 21 subsets). For each

participant, inverse transformation parameters were obtained from SPM12 DARTEL segmen-

tation procedure using individual T1 images obtained on the same day as the PiB-PET and

MNI template. These parameters were applied to the automatic anatomic labeling (AAL) atlas

to acquire AAL atlas in native space for each participant, which were then used to extract PiB

retention levels. Retention in cerebellum was separately extracted using a spatially unbiased

atlas template of the cerebellum and brainstem (SUIT) to improve intensity normalization

process [19]. Cerebellar gray matter was used as the reference region for quantitative normali-

zation of cerebral PiB uptake. Using an AAL algorithm [20] and a region-combining method

[21], the regions of interest (ROIs) were determined. The mean PiB retention levels in the

frontal, lateral parietal, precuneus–posterior cingulate, and lateral temporal regions were

divided by the mean cerebellar uptake value to yield a standardized uptake value ratio (SUVR)

value for each ROI. Subjects were defined as Aβ+ CN if the SUVR value for at least one of the

four ROIs was >1.4, and as Aβ− CN if the SUVR values of all four ROIs were�1.4 [21].

Microbial sample collection and preparation

Stool samples were collected from the enrolled participants with guidance of experts. In details,

every participant was guided to wear sterile gloves and collect stool by using sterile collection

paper (JeongHyun MED, Goyang-si, Republic of Korea). Then, stools were stored in DNA/
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RNA shield buffer (Zymo Research, Irvine, CA, USA) for protecting from DNA a degradation

at –80˚C until used. Metagenomic DNA extractions were performed on 500 mg of feces per

sample using a FastDNA1 SPIN Kit for Soil (MP Biomedicals, Solon, CA, USA) according to

manufacturer’s recommendations. DNA purity and quantity were estimated using a Nano-

Drop One Spectrophotometer (Thermo Scientific, Wilmington, DE, USA).

16S rRNA gene PCR amplification, sequencing, and processing

The extracted bacterial genomic DNA was used as a template for PCR amplification of the

V3–V4 region of the bacterial 16S rRNA gene. Amplification was performed according to the

Illumina 16S rRNA Sequencing Library Preparation guide (Illumina, San Diego, CA, USA)

using the following primers with an added adapter overhang sequence [22]: forward, 50- TCG
TCGGCAGCGTCAGATGTGTATAAGAGACAGCCTACGGGNGGCWGCAG -30; reverse, 50-GTC
TCGTGGGCTCGGAGATGTGTATAAGAGACAGGACTACHVGGGTATCTAATCC-30. PCRs were

performed in a 25-μL reaction volume containing 2 μL of genomic DNA (10 ng/μL), 0.5 μL of

each primer (10 μM), 12.5 μL of 2× KAPA HiFi HotStart ReadyMix (Kapa Biosystems, Wil-

mington, MA, USA), and 9.5 μL of distilled water. PCR conditions were as follows: initial

denaturation at 95˚C for 3 min; 25 cycles consisting of denaturation at 95˚C for 30 s, annealing

at 55˚C for 30 s, and extension at 72˚C for 30 s; and a final extension at 72˚C for 5 min. The

PCR products were purified with AMPure XP Beads (Beckman Coulter, Brea, CA, USA)

according to the manufacturer’s protocol. The attachment of dual-index sequences and Illu-

mina adapters was conducted using 5 μL of the PCR product, 5 μL of Illumina Nextera XT

Index Primer 1 (N7xx), 5 μL of Nextera XT Index Primer 2 (S5xx), 25 μL of 2× KAPA HiFi

HotStart Ready Mixq, and 10 μL of nuclease-free water. Thermocycling was performed as fol-

lows: 95˚C for 3 min; 8 cycles of 95˚C for 30 s, 55˚C for 30 s, and 72˚C for 30 s; and a final

extension at 72˚C for 5 min. PCR products were purified with AMPure XP beads, and the

quality control for the 16S rRNA libraries was performed using the Agilent Technologies 2100

Bioanalyzer (Agilent, Santa Clara, CA, USA). Libraries were normalized and pooled for

sequencing on the MiSeq platform (Illumina) by 2×300 bp-paired end sequencing following

standard Illumina sequencing protocols. The quality of the raw sequence reads was analyzed

using FastQC [23]. Illumina adapter sequences of the paired-end reads were removed using

Cutadapt version 2.2 [24]. Then, the trimmed sequences were processed using QIIME2 version

2019.7 [25]. Briefly, the reads were assigned to each sample according to a unique index; pairs

of reads from the original DNA fragments were merged using an import tool in QIIME2 [25].

Quality control and trimming were performed to yield sequences with lengths of 230 and 220

bp for the forward and reverse reads, respectively. To remove low-quality bases at the end of

the reads, the DADA2 software package [26] wrapped in QIIME2 was applied. To remove chi-

meras from the FASTQ files, a consensus method implemented in DADA2 was used. Taxo-

nomic annotation was performed by mapping the training reference set with primers

(forward, 50-CCTACGGGNGGCWGCAG-30; reverse, 50-GACTACHVGGGTATCTAATCC-30)
and extracting the V3–V4 region using GreenGenes version 13_8 [27]. We performed a nor-

malization of read counts. Coverage was calculated by feature counts/all sequence counts for

each sample. As a result, the median of coverage of Aβ− CN was 43.592, while that of Aβ+ CN

was 43.221. The coverages of each group were not also significantly different (P = 0.62, Wil-

coxon-Mann-Whitney test).

Statistical analysis

Demographic and clinical variables were compared using independent t-tests for continuous

variables and Chi-square tests for categorical variables. Differences in genera between the Aβ
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+ and Aβ− CN groups were analyzed by a generalized linear model (GLM) using the R package

“glmmTMB”. In this model, a zero-inflated negative binomial distribution was employed, and

sequence counts of each taxon were treated as a dependent variable. A group factor (Aβ+ and

Aβ− CN groups) was added to the model as an independent variable, with age, gender, body

mass index (BMI), and apolipoprotein E ε4 (APOE4) positivity as covariates. Only taxa with a

prevalence >0.1 were included in the analyses [28], and the natural log of total sequence

counts for each participant was used as the offset. P-values were adjusted using the false-dis-

covery-rate method and q-values <0.05 were considered significant. In addition, we con-

structed a multivariate logistic regression model based on the genera that differed significantly

between Aβ+ and Aβ− CN in the GLM analyses. In this model, Aβ positivity was entered as a

dependent variable, and the sequence counts of each genus were coded into dichotomous fac-

tors (i.e., 1 (presence) and 0 (absence)) and entered to the model together with the abovemen-

tioned covariates. The model was tested for a goodness of fit using Hosmer-Lemeshow Test

and its performance was measured using the area under the curve (AUC) of receiver operating

characteristic (ROC) curve. We also compared the AUC of the model with that of the model

with only covariates (i.e., age, sex, BMI, APOE4) using the Delong method.

For exploration, we compared microbial pathways of Kyoto Encyclopedia of Genes and

Genomes (KEGG) orthologs between the Aβ+ and Aβ− groups. Phylogenetic Investigation of

Communities by Reconstruction of Unobserved States 1 (PICRUSt) based on operational tax-

onomic units (OTUs) was used for the comparison (version 1.1.4) [29]. P-values <0.05 were

considered significant.

Alpha diversities measured as evenness, observed species, Shannon Index, and Faith’s phy-

logenetic diversity were compared between the Aβ+ and Aβ− CN groups using the Kruskal–

Wallis test. Beta diversity was compared by principal coordinate analysis using Bray–Curtis

distances, weighted and unweighted UniFrac metrics, and Aitchison distances between the

two groups. Beta diversity between the groups was evaluated using permutational multivariate

analysis of variance (PERMANOVA) with 999 permutations. P-values <0.05 were considered

significant. All statistical analysis, unless otherwise mentioned, was performed using the R Sta-

tistical Software (version 4.0.2; R Foundation for Statistical Computing, Vienna, Austria).

Results

Participant characteristics

As shown in Table 1, there were no significant differences in age, gender, education, APOE4

positivity, BMI, and the presence of DM and HTN between the Aβ+ and Aβ− groups. As

expected, there was a significant difference in global Aβ retention between the two groups.

Using 16S rRNA sequencing, we identified a total of 227 fecal microbiome genera and 333 spe-

cies in the participants. Most abundant 5 genera were Bacteriodes, Prevotella, Faecalibacterium,

Unclassified Lachnospiraceae, and Coprococcus. Among 333 species, 149 gut microbiome spe-

cies were commonly found in all participants, while the numbers of observed gut microbiome

species were 231 for the Aβ+ group and 312 for the Aβ− group.

Differences in gut microbial taxa and classification performances of gut

microbial taxa

The GLM analysis revealed that the genera Megamonas, Serratia, Leptotrichia and Clostridium
(family Clostridiaceae) were increased in the Aβ+ CN group compared to the Aβ− CN group,

whereas the genera CF231, Victivallis, Enterococcus, Mitsuokella and Clostridium (family Erysi-
pelotrichaceae) were decreased in Aβ+ CN (Table 2 and Fig 1). In the ROC analysis, the logistic
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regression model with variables representing the presence or absence of each of the nine gen-

era effectively distinguish Aβ+ and Aβ− CN with the AUC value of 0.823 (95% CI 0.713–

0.934) (Fig 2). The Hosmer-Lemeshow test indicated a good fit (p = 0.727). Moreover, when

compared with the reference model, the model with the microbial genera was superior in dis-

tinguishing Aβ+ from Aβ− (AUC 0.823 vs 0.626, p = 0.003) (Fig 2).

Comparison of predicted functional microbiome pathways

With regard to the KEGG functional pathways predicted using PICRUSt, a decrease in the

pathway (i.e., gene contents) related to genetic information processing was found in the Aβ
+ CN group compared to the Aβ− CN group in level 1 (Fig 3). In level 2, pathways related to

translation and to cell growth and death were decreased in Aβ+ CN, whereas those related to

cellular processes and signaling and to metabolism of other amino acids were increased com-

pared to Aβ− CN (Fig 3 and S1 Table).

Table 1. Participant characteristics.

Aβ− CN Aβ+ CN p-value

(N = 60) (N = 18)

Age, yr 72.9 ± 6.8 75.2 ± 7.1 0.229

Gender (Female) 29 (48.3%) 11 (61.1%) 0.424

Education, yr 12.07 10.78 0.342

APOE4 Positivity 13 (21.7%) 6 (33.3%) 0.345

Global Aβ deposition (SUVR) 1.075 ± 0.074 1.800 ± 0.293 <0.001

BMI 24.3 ± 2.8 24.0 ± 3.2 0.741

Hypertension 32 (53.3) 10 (55.6) 0.868

DM 13 (21.7) 4 (22.2) 1.000

Note. Data are presented as mean ± SD or N(%). Either independent t test or Fischer’s exact test was used for comparison between groups

Abbreviations. Aβ+ CN: cognitively normal participants with amyloid retention Aβ− CN: cognitively normal participants without amyloid retention; Aβ: amyloid beta;

APOE4: apolipoprotein E ε4; SUVR: standardized uptake value ratio; BMI: body mass index, DM: diabetes mellitus

https://doi.org/10.1371/journal.pone.0278276.t001

Table 2. GLM analysis results of taxonomic differences in microbiome between Aβ+ CN participants and Aβ− CN participants.

Bacterial genus Aβ− CN (%) Aβ+ CN (%) B value SE Z p-value q-value

Megamonas 0.804 0.441 3.399 0.437 7.787 <0.001 <0.001

CF231 1.39E-01 5.13E-03 -3.237 0.626 -5.171 <0.001 <0.001

Victivallis 8.63E-03 4.20E-04 -3.447 0.913 -3.777 <0.001 0.004

Serratia 0.014 0.107 3.044 0.835 3.644 <0.001 0.005

Leptotrichia 0.003 0.019 5.862 1.859 3.152 0.002 0.024

Clostridium (family Clostridiaceae) 0.436 0.918 0.788 0.263 2.992 0.003 0.034

Enterococcus 0.075 0.011 -2.044 0.728 -2.807 0.005 0.042

Mitsuokella 1.51E-01 6.38E-03 -2.119 0.759 -2.790 0.005 0.042

Clostridium (family Erysipelotrichaceae) 5.67E-02 2.44E-03 -2.222 0.805 -2.760 0.006 0.043

Note. Results of the GLM analysis adjusted for age, gender, BMI, and APOE4 positivity with Aβ− CN as the reference along with relative abundances (%) for each

group. Only genera with q-values <0.05 are shown.

Abbreviations. GLM: generalized linear model; Aβ+ CN: cognitively normal participants with amyloid retention; Aβ− CN: cognitively normal participants without

amyloid retention; APOE4: apolipoprotein E ε4; BMI: body mass index.

https://doi.org/10.1371/journal.pone.0278276.t002
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Differences in diversity indices

There were no significant differences in any of the alpha diversity indices for fecal microbiota

between Aβ+ and Aβ− (S1 Fig). Similarly, we found no significant beta diversity between Aβ
+ and Aβ− (S2 Fig).

Discussion

In our study, we found significant alterations in gut microbiome associated with Aβ positivity

in CN elderly groups. Although many previous studies reported various gut microbial alter-

ations in older adults with cognitive impairment such as AD dementia and MCI [7–9], little

information is yet available for such alterations in cognitively unimpaired individuals with

cerebral amyloid deposition, i.e., preclinical AD. We added evidence for gut microbial changes

specifically associated with preclinical stage of AD process.

Four genera were increased, and five genera were decreased, in Aβ+ CN compared to Aβ
− CN. Among the four genera that were increased in the Aβ+ CN group, i.e., Megamonas, Ser-
ratia, Leptotrichia, and Clostridium (family Clostridiaceae), Megamonas was previously linked

to Pre-DM [30], gestational DM [31], and obesity [32]. Given that both midlife obesity and

DM are associated with increased risk of AD dementia or increased AD pathology [33, 34],

Megamonas may contribute to cerebral Aβ deposition via its role in metabolic diseases. Serra-
tia is known for occasional opportunistic infections [35], but its other roles in human health

are largely unknown. Leptotrichia has been associated with periodontal disease, and its

increase in the saliva microbiome was previously linked to AD [36]. The pro-inflammatory

nature of this microorganism may contribute to AD not only through the oral cavity but also

via the intestinal tract. The genus Clostridium (family Clostridiaceae) represents a large set of

species comprising many pathogenic and commensal bacteria, including Clostridium difficile
[37]. In accordance with our result, a decreased Clostridium level induced by probiotic treat-

ment and exercise was associated with better cognitive performance in an AD mouse model

Fig 1. Log predicted counts of the genera associated with Aβ positivity. Prediction was made using GLM analysis adjusted for age, gender, BMI,

APOE4 positivity. Only genera with q<0.05 are shown. Abbreviation. Aβ: amyloid beta; GLM: generalized linear model; Aβ+ CN: cognitively normal

participants with amyloid retention Aβ− CN: cognitively normal participants without amyloid retention; APOE4: apolipoprotein E ε4; BMI: body mass

index.

https://doi.org/10.1371/journal.pone.0278276.g001
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[38]. In the present study, the most abundant species of genus Clostridium (family Clostridia-
ceae) was Clostridium celatum, whose level was also positively associated with amyloid positiv-

ity when we further analyzed the data. Although additional confirmatory studies are needed,

the possible pathogenicity of C.celatum [39] and other known pathogenic Clostridia such as C.

difficile may be related to harmful effects exerted by this genus on the brain.

Among the five genera that were decreased in the Aβ+ group, i.e., CF231, Victivallis, Entero-
coccus, Mitsuokella and Clostridium (family Erysipelotrichaceae), Enterococcus is ubiquitous

Fig 2. Receiver operating characteristic (ROC) curve analysis of the multivariate logistic model to detect preclinical AD using microbiome.

The blue line represents the model with the presence or absence of nine genera revealed from the GLM analysis and covariates (i.e., age, sex,

APOE4 positivity and BMI), while a green line represents the reference model including only the covariates. Abbreviation. AD: Alzheimer’s

disease; APOE4: apolipoprotein E ε4; BMI: body mass index.

https://doi.org/10.1371/journal.pone.0278276.g002
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microorganism that produces lactic acid and has demonstrated probiotic potential [40]. The

genus is also known to have anti-inflammatory properties [41] and to produce long chain fatty

acids (LCFA), which could reduce obesity [42]. Thus, decreased Enterococcus may accelerate

brain Aβ deposition through increased inflammation or altered lipid metabolism [34, 43]. In

consistent with our results, a previous study reported reduced Clostridium (Family Erysipelotri-
chaceae) in AD dementia participants [10]. Nevertheless, Clostridium ramosum, the representa-

tive species of Clostridium (family Erysipelotrichaceae), was reportedly associated with obesity

and increased energy absorption in a mouse model [44] and with DM in humans [45]. The

genus CF231 was also associated with overweight in Korean participants [46]. Given that the

relation of body weight with AD is complex, as the timing and degree of obesity matter [47],

further research on the association of AD with microbiome changes and metabolic diseases is

needed to clarify the relationship. The inverse relationship of Mitsuokella and Victivallis with

Aβ positivity is difficult to explain because their role in human health is largely unknown.

Considering all the potential links between the genera and pathophysiological changes

mentioned above paragraphs, inflammatory or metabolic changes may mediate the relation-

ship between the microbial changes we found and Aβ increase in preclinical AD. The media-

tion of inflammation was also suggested by previous studies on gut microbial changes in AD

dementia and MCI patients [7, 48]. A study revealed altered pro- and anti- inflammatory

microbiome in cognitively impaired Aβ+ participants [48]. Another study also demonstrated

that gut microbiome associated with anti-inflammatory pathway was changed in AD dementia

participants [7]. In regard of the mediation by metabolic changes, bacterial genera associated

with DM or obesity were found to be altered in AD dementia participants [10]. However, as

we did not directly examine the involvement of inflammation or metabolic changes related to

microbial alterations, further studies are necessary to confirm the possibilities.

With the logistic regression model including the nine genera, we can effectively discrimi-

nate Aβ+ CN from Aβ−CN. The ROC analyses revealed fairly good AUC value. While this is

generally line with previous reports that microbiome can distinguish amnestic MCI and AD

from healthy controls [8, 9], our result further suggest that the microbiome may be helpful in

detecting or screening preclinical or asymptomatic AD.

Fig 3. Relative differences in predicted gene contents in microbiome between Aβ− CN participants and Aβ+ CN participants.

Abbreviations. Aβ+ CN: cognitively normal participants with amyloid retention Aβ− CN: cognitively normal participants without

amyloid retention.

https://doi.org/10.1371/journal.pone.0278276.g003
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When we additionally analyzed functional aspects of the microbiome using PICRUSt, Aβ
+ CN exhibited relatively low gene contents in pathways associated with genetic informa-

tion processing such as translation or with cellular growth and death. These findings imply

that cerebral amyloid retention may be associated with decreased vital genetic processes of

gut microbiome. Similar to our results, a previous study reported decreased transcription,

another step in genetic information processing, in AD dementia and MCI compared to

healthy controls [9]. We also found that predicted gene contents related to cellular processes

and signaling and to other amino acids metabolism were increased in Aβ+ CN. Other

amino acid metabolism refers to the metabolism of non-proteinogenic amino acids such as

beta alanine or D-amino acids. D-amino acids are key components of bacterial peptidogly-

can [49], which is known to cause inflammatory processes in the human brain [50]. Bacte-

rial peptidoglycan was also observed together with neuritic plaque in post-mortem brains of

AD patients [51]. Furthermore, the beta-alanine level in feces was increased in the feces of

patients with inflammatory bowel disease [52]. Thus, the inflammatory processes related to

these metabolites may be the underlying link for the association found in this study. How-

ever, cautious interpretations of the results of the PICRUSt functional analysis of the micro-

biome are warranted, since unlike metagenomic sequencing, 16S rRNA sequencing can

only infer functional profiles [29].

In this study, we also investigated the alpha and beta diversities of the gut microbiome. No

differences were found in the alpha and beta diversities between Aβ+ and Aβ− CN partici-

pants. This result is not consistent with previous reports, which showed significant decrease of

alpha diversity [8, 9] and significant beta diversity [7–9] in individuals with AD dementia or

MCI. However, it should be noted that the current study targeted only Aβ+ CN (i.e., preclinical

or asymptomatic AD), whereas all of the previous studies investigated cognitively impaired

(i.e., AD dementia and MCI) patients. Dementia or a cognitively impaired state itself is com-

monly associated with poorer nutritional status and/or lower BMI [53] which could alter

microbiome composition [54]. Moreover, most AD dementia patients and some MCI individ-

uals take cholinesterase inhibitors, which can increase colonic transit time and affect bowel

conditions related to the gut microbiome [55]. Therefore, the decreased alpha and beta diver-

sity of gut microbiome reported in previous studies may not be directly linked to AD pathol-

ogy but may, instead, reflect secondary phenomena caused by nutritional changes or

medications common in cognitively impaired individuals.

A strength of our study is its role as the first to reveal gut microbiome alterations associated

with preclinical AD independently of the influence of cognitive impairment. However, some

limitations need to be mentioned. First, as this was a cross-sectional study, we cannot infer a

causal relationship between gut microbial alterations and brain Aβ deposition. Further longi-

tudinal research would be helpful to confirm the beneficial or detrimental effects of the micro-

biomes found in this study. Second, we did not assess the diet intake patterns of individual

participants. Although CN individuals usually maintain their original dietary patterns [56, 57]

and BMI was controlled as a covariate in the present study, individual differences in diet may

confound the result. Additionally, detailed information about the past experience of antibiotics

intake needed to be considered although we excluded individuals with current use of antibiot-

ics. Third, other potential confounders such as physical activity, probiotic use, and alcohol

consumption also need to be further controlled. Finally, the sample size was relatively small,

which might have it difficult to reveal subtle differences between groups. Further studies with

larger samples are needed to confirm the findings.

In conclusion, our findings suggest that specific alterations of gut bacterial taxa are related

to preclinical AD and may be helpful for screening the preclinical AD.
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S1 Fig. Comparison of α-diversities of the fecal microbiome between Aβ− CN participants

and Aβ+ CN participants according to (A) evenness (B) observed species (C) Shannon index

and (D) phylogenic diversity (PD). Abbreviations. Aβ+ CN: Cognitively normal participants

with amyloid retention; Aβ− CN: Cognitively normal participants without amyloid retention;

PD: phylogenetic diversity.

(TIF)

S2 Fig. β-diversities of the fecal microbiome between Aβ− CN participants and Aβ+ CN par-

ticipants based on (A) Bray-Curtis (B) unweighted UniFrac (C) weighted UniFrac and (D)
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tion; Aβ− CN: cognitively normal participants without amyloid retention.

(TIF)

S1 Table. Comparison of relative abundances of predicted KEGG functional pathway anal-

ysis between Aβ+ CN participants and Aβ− CN participants.

(PDF)
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